Analyzing Patient-Level Data in a Breast Cancer Clinical Trial

分析乳腺癌临床试验中的患者水平数据

基本信息

项目摘要

ABSTRACT Most women treated for breast cancer will experience some form of drug-related toxicity and subsequent impairments in Health-related Quality of Life (HRQOL), yet toxicity is assessed inconsistently in oncology trials. Although the potential for side effects of treatments is of great importance to patients in making informed choices about their treatment, the toxicities are often under-reported. When assessing symptoms of trial participants, patients and providers do not always attribute symptoms to the study drug, which can result in misclassification of the maximum tolerated dose. Furthermore, many drug toxicities such as neuropathy, fatigue and diarrhea are often underreported by providers in trials, and thus a patient-centered assessment may lead to earlier recognition of reversable side effects. A major gap in knowledge is how to analyze and utilize patient level toxicity data in real time, and how to present the data to providers in a format that can result in early toxicity mitigation. While the number of lower- grade toxicities may increase given the reporting of patient outcomes, acting on these lower grade toxicities can mitigate serious adverse events (SAEs). We have recently instantiated an electronic patient reported outcomes (ePRO) platform across 26 sites in I- SPY2 where we collect adverse events and quality of lie information. I-SPY2 is an adaptive platform trial for high risk, early-stage breast cancer that continuously evaluates the efficacy of new neoadjuvant breast cancer therapies. The overall objective of this proposal is to refine and implement new methodology using interpretable machine learning that can be used to underpin a framework to redirect treatment and avoid more serious illnesses. Such methodology does not exist in clinical trials today and can hugely benefit patients, their providers and the clinical care team by tracking the inflection points of patient distress that could otherwise be missed but may require more immediate intervention. The methods will be developed through a computational framework in discussion with providers, at different stages of treatment, such as when the severity of a single symptom really impacts physical functioning (primary outcome), or when constellation of symptoms herald a significant deterioration in overall health. The central hypothesis of this proposal is that the methodology that we are developing on who will develop chronic conditions and symptoms that may affect quality of life will mitigate the event of a serious adverse reaction and improve overall quality of life, particularly physical functioning. We will test our methodology in a group of I-SPY patients and Breast Care Center early-stage participants at UCSF.
抽象的 大多数接受过乳腺癌治疗的妇女会经历某种形式的与药物有关的毒性和随后的毒性 与健康相关的生活质量障碍(HRQOL)的损害,在肿瘤学试验中尚不一致地评估了毒性。 尽管治疗副作用的潜力对于患者而言至关重要 关于他们的治疗的选择,毒性常常被低估。评估试验症状时 参与者,患者和提供者并不总是将症状归因于研究药物,这可能导致 最大耐受剂量的错误分类。此外,许多药物毒性,例如神经病, 疲劳和腹泻通常被提供者在试验中低估,因此以患者为中心的评估 可能会导致早期识别可逆副作用。 知识的主要差距是如何实时分析和利用患者水平的毒性数据,以及如何 以一种形式将数据呈现给提供者,从而导致早期毒性降低。而较低的数量 鉴于患者预后的报告,等级毒性可能会增加 可以减轻严重的不良事件(SAE)。 我们最近实例化了一名电子患者报告的结果(EPRO)平台,跨I-的26个地点 SPY2我们收集不良事件和谎言信息的质量。 i-spy2是一个自适应平台试验 高风险,早期乳腺癌不断评估新的新辅助乳腺癌的功效 疗法。该提案的总体目的是使用 可解释的机器学习,可用于基础一个框架以重定向处理并避免更多 严重疾病。今天的临床试验中不存在这种方法,可以极大地使患者受益 提供者和临床护理团队通过跟踪否则可能是患者困扰的拐点 错过,但可能需要更直接的干预。该方法将通过计算开发 与提供者的讨论框架,在不同的治疗阶段,例如单一的严重程度 症状确实会影响身体机能(主要结果),或者症状星座预示 整体健康状况显着恶化。该提议的核心假设是 我们正在发展谁会发展可能影响生活质量的慢性疾病和症状 减轻严重反应的事件并改善整体生活质量,尤其是身体上的质量 功能。我们将在一组I-Spy患者和乳房护理中心早期测试我们的方法论 UCSF的参与者。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Amrita Basu Somani其他文献

Amrita Basu Somani的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Amrita Basu Somani', 18)}}的其他基金

Predicting the Likelihood of Immune-related Adverse Events in Breast Cancer Patients
预测乳腺癌患者发生免疫相关不良事件的可能性
  • 批准号:
    10304516
  • 财政年份:
    2021
  • 资助金额:
    $ 36.94万
  • 项目类别:

相似国自然基金

基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
  • 批准号:
    52378011
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
社交网络上观点动力学的重要影响因素与高效算法
  • 批准号:
    62372112
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
  • 批准号:
    72372021
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
算法人力资源管理对员工算法应对行为和工作绩效的影响:基于员工认知与情感的路径研究
  • 批准号:
    72372070
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
算法鸿沟影响因素与作用机制研究
  • 批准号:
    72304017
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Early Detection of Right Ventricular Dysfunction and Emerging Pulmonary Hypertension in Systemic Sclerosis
系统性硬化症患者右心室功能障碍和肺动脉高压的早期发现
  • 批准号:
    10585312
  • 财政年份:
    2023
  • 资助金额:
    $ 36.94万
  • 项目类别:
Responsive Neurostimulation for Treatment Resistant Depression
反应性神经刺激治疗难治性抑郁症
  • 批准号:
    10513243
  • 财政年份:
    2023
  • 资助金额:
    $ 36.94万
  • 项目类别:
Real-time Prediction of Adverse Outcomes After Surgery
实时预测手术后不良后果
  • 批准号:
    10724048
  • 财政年份:
    2023
  • 资助金额:
    $ 36.94万
  • 项目类别:
A mechanistic understanding of treatment-related outcomes of sleep disordered breathing using functional near infrared spectroscopy
使用功能性近红外光谱从机制上理解睡眠呼吸障碍的治疗相关结果
  • 批准号:
    10565985
  • 财政年份:
    2023
  • 资助金额:
    $ 36.94万
  • 项目类别:
Value of Sleep Metrics in Predicting Opioid-Use Disorder Treatment Outcomes: Leadership and Data Coordinating Center
睡眠指标在预测阿片类药物使用障碍治疗结果中的价值:领导力和数据协调中心
  • 批准号:
    10783610
  • 财政年份:
    2023
  • 资助金额:
    $ 36.94万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了