Environmental modulation of metabolic function in microbial communities
微生物群落代谢功能的环境调节
基本信息
- 批准号:10720118
- 负责人:
- 金额:$ 33.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-03 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAffectAutomobile DrivingBacteriaBasic ScienceBiological ModelsBiomassBlood PressureCarbonCarbon DioxideCell RespirationCellsChemicalsChromosome MappingClimateCommunitiesComplexCustomDevicesDietEnvironmentEnvironmental ImpactEquilibriumEutrophicationExhibitsFrequenciesGenesGenetic TranscriptionGenomeGenomicsGenotypeGlobal WarmingGoalsGrowthHealthHematopoietic NeoplasmsHumanHuman bodyHumanitiesIndividualKnowledgeLearningMachine LearningMapsMeasurementMediatingMetabolicMetabolic ControlMetabolic PathwayMetabolismMethodsMicrobial PhysiologyModelingMolecularNitratesNitric OxideNitritesNutrientOralOrganismOutcomeOxidantsOxygenOzonePathway interactionsPatternPhenotypePhysiologicalPhysiologyPlayPolysaccharidesPredispositionProcessProductionPropertyReactionRegulator GenesResource SharingResourcesRespirationRoleRouteScheduleSourceStructureSystemTestingToxic effectVariantWorkbacterial communitybehavior predictionclimate changedenitrificationdesigngenome-widehost-associated microbial communitiesimprovedinsightlearning communitylensmicrobialmicrobial communitymicrobiome compositionmicrobiome researchmicrobiotapH gradientpollutantprogramssuccesstrait
项目摘要
Microbial communities are complex systems whose emergent metabolic properties play a key role in
determining human health. Metabolic processes enabled by host-associated microbiota play a defining role in
individual health outcomes, and the emergent metabolism of microbial consortia affect environmental
processes from eutrophication to climate change, impacting human health on a global scale. Therefore,
humanity would benefit from a quantitative understanding of the rules by which the genomic composition of a
microbial community, and the environment in which it resides, determines its emergent metabolism.
Discovering the principles by which environmental variation alters community structure and determines
metabolic function is a necessity if we are to manipulate or design communities to improve health outcomes.
However, this task is challenging for existing methods.
In preliminary work, we establish a new quantitative framework for predicting the emergent metabolism
of a bacterial community from its genomic composition using denitrification as a model metabolic process.
Combining quantitative bacterial phenotyping, modeling, and a simple statistical approach we demonstrated a
method that quantitatively maps gene content to metabolite dynamics in microbial communities. This insight
provides a route to quantitatively connecting the genes present in a community to metabolite dynamics. The
next challenge is to use this insight to understand how community function and structure depend on the
environment.
We propose to extend this success by understanding how environmental gradients, complexity, and
dynamics impact community structure and function. We accomplish this by developing denitrification as a
model metabolic process. The outcomes of the proposed work will be three-fold. First, microbiome studies
have documented ubiquitous associations between environmental conditions and community composition, but
we do not understand the ecological or physiological origins of these emergent patterns or their metabolic
consequences. Using denitrifying communities across a pH gradient I will show that such patterns emerge from
ecological interactions. I will show that these interactions arise generically from the presence of physiological
trade-offs on microbial traits, providing a generalizable route to understanding the functional impact of
environmental variation on communities. Second, our preliminary study connected genomes to community
metabolism for a simple metabolic pathway acting. I will extend this success to complex pathways and
environmental conditions by constructing a method for predicting carbon utilization by communities in complex
nutrient conditions directly from genomes. I will utilize a powerful blend of genome-scale metabolic modeling
and multi-view machine learning, with impacts from host physiology to climate change. Third, I will use
denitrifying communities to test the idea that, like cells and organisms, microbial communities exhibit predictive
behaviors in dynamic environments. I propose that communities assembled in environments with distinct
schedules of aerobic respiration and anaerobic respiration (denitrification) adapt to facilitate the prompt
utilization of electron acceptors. I will test the hypothesis that community-level learning emerges from
ecological interactions and distinct gene regulatory programs, providing a new conceptual lens through which
we can view community adaptation to dynamic environments.
微生物群落是复杂的系统,其新兴代谢特性在
确定人类健康。由宿主相关的微生物群启用的代谢过程在
个人健康结果以及微生物财团的新陈代谢影响环境
从富营养化到气候变化的过程,影响全球范围的人类健康。所以,
人类将从对规则的定量理解中受益
微生物群落及其居住的环境决定了其新陈代谢。
发现环境变化改变社区结构并确定的原则
如果我们要操纵或设计社区以改善健康结果,代谢功能是必要的。
但是,对于现有方法,此任务具有挑战性。
在初步工作中,我们建立了一个新的定量框架来预测新陈代谢
通过其基因组组成,使用反硝化作为模型代谢过程的细菌群落。
结合定量细菌表型,建模和简单的统计方法,我们证明了一个
定量将基因含量映射到微生物群落中的代谢产物动力学的方法。这个见解
提供了一条定量连接社区中存在的基因与代谢产物动力学的途径。这
下一个挑战是利用这种见解来了解社区功能和结构如何取决于
环境。
我们建议通过了解环境梯度,复杂性和
动态影响社区的结构和功能。我们通过将反硝化作为一个
模型代谢过程。拟议工作的结果将是三倍。首先,微生物组研究
已经记录了环境条件与社区组成之间的普遍关联,但
我们不了解这些新兴模式或其代谢的生态或生理起源
结果。使用pH梯度跨pH梯度的反硝化社区,我将表明这种模式从
生态互动。我将证明这些相互作用通常来自生理的存在
在微生物特征上进行权衡,提供了一条可概括的途径来理解
社区的环境变化。第二,我们的初步研究将基因组与社区联系起来
新陈代谢途径的代谢。我将把这一成功扩展到复杂的途径和
环境条件通过构建一种预测社区碳利用的方法
直接来自基因组的营养条件。我将利用基因组级代谢建模的强大融合
以及多视图机器学习,从宿主生理到气候变化产生影响。第三,我会使用
硝化社区以测试以下观点,即像细胞和生物一样,微生物群落表现出预测性
动态环境中的行为。我建议社区在具有不同的环境中集会
有氧呼吸和厌氧呼吸(反硝化)的时间表适应提示
电子受体的利用。我将检验以下假设,即社区级学习来自
生态互动和不同的基因调节程序,提供了一种新的概念镜头
我们可以查看社区对动态环境的适应。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Seppe Kuehn其他文献
Seppe Kuehn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
非均匀退磁影响下城轨列车永磁无位置传感器牵引系统容错控制研究
- 批准号:52307068
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于鸟喙特征的仿生割胶刀摩擦特性及其对割面质量影响机理研究
- 批准号:52305251
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
轴流泵作透平角区分离涡演化对压力脉动的影响机理及控制策略
- 批准号:52309116
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
转录共激活因子MED1对银屑病微环境稳态的影响及其机制研究
- 批准号:82304025
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
混用模式下戊唑醇稻作环境行为归趋对枯草芽孢杆菌生物被膜形成的影响及机制
- 批准号:32372630
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 33.71万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 33.71万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 33.71万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 33.71万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 33.71万 - 项目类别:
Research Grant