Advancing Hemiarthroplasty: Predicting in vivo performance of cartilage bearing systems through benchtop and ex vivo testing.
推进半关节成形术:通过台式和离体测试预测软骨支撑系统的体内性能。
基本信息
- 批准号:10719393
- 负责人:
- 金额:$ 73.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAlloysAnimal ModelArticulationBiocompatible MaterialsBiological AssayBone SpurBovine CartilageCartilageCartilage MatrixCell SurvivalCellsCeramicsCharacteristicsChromiumCobaltConsensusDataDegenerative DisorderDegenerative polyarthritisDevelopmentDiseaseDistalEquationFailureFamily suidaeFutureGaitGlycosaminoglycansGoalsHardnessHarvestHealthHip region structureHistopathologyHydroxyprolineIndividualIonsJointsKneeLifeLinear ModelsMaterials TestingMeasuresMechanicsMetabolismMetalsMethodologyMicroscopicMiniature SwineModelingModulusMolybdenumMotionOsteogenesisOutcomeOutcome MeasurePatientsPerformancePolymersPreclinical TestingProteoglycanProxyReplacement ArthroplastyReportingResearchRoentgen RaysSamplingShoulderStandardizationStatistical ModelsSurfaceSynovitisSystemTestingThickTissuesTitaniumToxic effectWettabilityWorkWristbonecell injurycortical bonedesignfootimprovedin vivojoint destructionmechanical propertiesnoveloutcome predictionperformance testsporcine modelpredicting responsepreservationprimary outcomeprogramspyrolytic carbonresponsesecondary outcomespatiotemporalsuccesstool
项目摘要
ABSTRACT
The ultimate goal of this research program is to advance hemiarthroplasty performance. Hemiarthroplasty
involves replacement of one of the articular joint surfaces with an artificial bearing surface. It offers a clear benefit
in patients with localized cartilage damage, preserving the healthy bone and cartilage in the joint to maximize
future treatment options. And hemiarthroplasty is inherent in the replacement of individually diseased carpal
(wrist) or tarsal (foot) bones, which have multiple articulations with neighboring bones. Currently,
hemiarthroplasty outcomes vary dramatically by the joint involved and by the type of bearing surface used to
articulate with the opposing cartilage. Failure most often occurs by degeneration of the opposing articular
surface. A critical challenge in advancing hemiarthroplasty performance is the ability to identify bearing surfaces
that will maintain healthy cartilage. There are numerous candidate biomaterials that might be suitable for use as
hemiarthroplasty bearing surfaces, including metals, ceramics, and polymers, as well as specialized coatings,
such as titanium nitride and pyrolytic carbon. However, the performance of these materials has been mixed, due
in large part to the lack of standardized and validated testing methodologies. Accordingly, the specific objective
of this project is to develop a model where benchtop and ex vivo testing can predict the cartilage response to
hemiarthroplasty bearing system wear in a fit-for-purpose large animal model. This goal will be achieved by
completing three specific aims. In the first, we will characterize the material and mechanical properties of eight
candidate hemiarthroplasty bearing surfaces (2 metals, 4 polymers, 1 ceramic, and 1 pyrolytic carbon) using
standard benchtop mechanical tests (roughness, wettability, modulus, hardness, and wear testing against
cortical bone). In the second, we will characterize the cartilage bearing performance of each of the candidate
biomaterials by wear testing them against bovine cartilage plugs in a joint motion-simulating biotribometer, using
proteoglycan/glycosaminoglycan (PG/GAG) and hydroxyproline as measures of cartilage matrix degradation and
live/dead assays as a measure of cell damage. In the third, we will test four of the 8 materials from Aims 1 & 2
as bearing surfaces in a novel unicompartmental tibial hemiarthroplasty model in the Yucatan minipig, measuring
cartilage damage (macro- and microscopic), synovial inflammation, cartilage thickness, and osteophyte bone
formation at 52 weeks. And finally, we will develop a statistical model where the data from Aims 1 and 2 can be
used to predict the outcome in Aim 3. The work outlined in this proposal will yield a model where benchtop and
ex vivo testing can predict the cartilage response to hemiarthroplasty. This project will provide a crucial tool
needed to accelerate the design, development, and FDA clearance of new hemiarthroplasty bearing surfaces,
resulting in a significant benefit for millions of patients afflicted with degenerative joint disease.
抽象的
该研究计划的最终目标是提高半截骨术表现。半截骨术
涉及用人造轴承表面替换一个关节表面之一。它提供了明显的好处
在局部软骨损伤的患者中,保留关节中健康的骨骼和软骨以最大化
未来的治疗选择。半肢体成形术是替代单独患病的腕骨的固有的
(手腕)或骨(脚)骨骼,它们与邻近骨骼有多个关节。现在,
半肢体成形术的结果因所涉及的关节和轴承表面的类型而变化很大
与相对的软骨表达。失败通常是通过对立关节的变性而发生的
表面。提高半肢体置换性能的关键挑战是识别轴承表面的能力
这将保持健康的软骨。有许多候选生物材料可能适合使用
半截骨术表面,包括金属,陶瓷和聚合物,以及专门的涂料,
例如硝酸钛和热解碳。但是,这些材料的性能已混合
在很大程度上缺乏标准化和验证的测试方法。因此,具体目标
这个项目的是开发一个模型,台式和体内测试可以预测软骨的响应
半肢体成形术轴承系统在适合的大型动物模型中磨损。这个目标将通过
完成三个具体目标。首先,我们将表征八个的材料和机械性能
候选半腔膜置换表面(2种金属,4个聚合物,1个陶瓷和1个热解碳)使用
标准台式机械测试(粗糙度,润湿性,模量,硬度和磨损测试
皮质骨)。在第二个中,我们将表征每个候选人的软骨轴承性能
通过磨损测试将其在联合运动模拟生物纤维计中对牛软骨塞进行测试的生物材料,并使用
蛋白聚糖/糖胺聚糖(pg/gag)和羟基普罗林作为软骨基质降解和
活/死测定作为细胞损伤的量度。在第三个中,我们将测试AIMS 1和2的8种材料中的四种
作为新型单室胫骨半截骨术模型中的轴承表面,测量
软骨损伤(宏观和显微镜),滑膜炎症,软骨厚度和骨质骨骨骼
52周的形成。最后,我们将开发一个统计模型,其中AIM 1和2的数据可以是
用于预测目标3中的结果。该提案中概述的工作将产生一个模型
离体测试可以预测软骨对半截骨术的反应。该项目将提供一个至关重要的工具
需要加速新的半截骨表面的设计,开发和FDA清除,
数百万患有退化性关节疾病的患者带来了重大益处。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joseph J Crisco其他文献
Joseph J Crisco的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joseph J Crisco', 18)}}的其他基金
Multi-modal Tracking of In Vivo Skeletal Structures and Implants
体内骨骼结构和植入物的多模式跟踪
- 批准号:
10839518 - 财政年份:2023
- 资助金额:
$ 73.05万 - 项目类别:
Validation of the Yucatan Minipig as a Preclinical Model for Wrist Bone Arthroplasty
尤卡坦小型猪作为腕骨关节置换术临床前模型的验证
- 批准号:
10574928 - 财政年份:2023
- 资助金额:
$ 73.05万 - 项目类别:
Multi-modal Tracking of In Vivo Skeletal Structures and Implants
体内骨骼结构和植入物的多模式跟踪
- 批准号:
10367144 - 财政年份:2022
- 资助金额:
$ 73.05万 - 项目类别:
Multi-modal Tracking of In Vivo Skeletal Structures and Implants
体内骨骼结构和植入物的多模式跟踪
- 批准号:
10610317 - 财政年份:2022
- 资助金额:
$ 73.05万 - 项目类别:
Pre-Clinical Development of an Instrumented Trapezium Carpal Bone
仪器化梯形腕骨的临床前开发
- 批准号:
10132242 - 财政年份:2020
- 资助金额:
$ 73.05万 - 项目类别:
1st International Thumb Osteoarthritis Workshop (ITOW)
第一届国际拇指骨关节炎研讨会(ITOW)
- 批准号:
8652117 - 财政年份:2013
- 资助金额:
$ 73.05万 - 项目类别:
Motion-Specific Toy Controllers for Upper Extremity Rehabilitation in Children
用于儿童上肢康复的运动专用玩具控制器
- 批准号:
8511423 - 财政年份:2012
- 资助金额:
$ 73.05万 - 项目类别:
Motion-Specific Toy Controllers for Upper Extremity Rehabilitation in Children
用于儿童上肢康复的运动专用玩具控制器
- 批准号:
8385119 - 财政年份:2012
- 资助金额:
$ 73.05万 - 项目类别:
相似国自然基金
轻量化多功能因瓦合金多孔材料增材制造与性能表征评价
- 批准号:12372133
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
中熵合金低温协同强化及其多场耦合环境下应力腐蚀行为的研究
- 批准号:52371070
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
钛合金表面微区电势差特征促细胞功能表达及其免疫微环境作用机制
- 批准号:32371390
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
增材制造锌镁合金复合椎间融合器降解调控机制与生物学效应研究
- 批准号:52301302
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
Hf对激光选区熔化CM247LC镍基高温合金裂纹形成与高温强韧性的作用机理
- 批准号:52301060
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Deciphering the relationship between bioresorbable magnesium alloy corrosion and the inflammatory microenvironment of the neotinima
解读生物可吸收镁合金腐蚀与新生细胞炎症微环境之间的关系
- 批准号:
10580115 - 财政年份:2023
- 资助金额:
$ 73.05万 - 项目类别:
Chip-Scale Intraoperative Optical Navigation with Immunotargeted Upconverting Nanoparticles
使用免疫靶向上转换纳米颗粒的芯片级术中光学导航
- 批准号:
10743477 - 财政年份:2023
- 资助金额:
$ 73.05万 - 项目类别:
Anti-biofilm laser-mediated photothermal ablation via complex noble metal nanostructures
通过复杂的贵金属纳米结构进行抗生物膜激光介导的光热烧蚀
- 批准号:
10625065 - 财政年份:2022
- 资助金额:
$ 73.05万 - 项目类别:
Bioresorbable Zinc Staples for Anastomoses in the Digestive Tract
用于消化道吻合术的生物可吸收锌钉
- 批准号:
10809825 - 财政年份:2022
- 资助金额:
$ 73.05万 - 项目类别:
Bioresorbable Zinc Staples for Anastomoses in the Digestive Tract
用于消化道吻合术的生物可吸收锌钉
- 批准号:
10372304 - 财政年份:2022
- 资助金额:
$ 73.05万 - 项目类别: