Statistical Methods for the Analysis of ChlP-chip Data
ChlP 芯片数据分析的统计方法
基本信息
- 批准号:7616521
- 负责人:
- 金额:$ 28.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-04-26 至 2011-03-31
- 项目状态:已结题
- 来源:
- 关键词:AffinityAlgorithmsBase PairingBindingBinding SitesBioconductorBiologic CharacteristicBiologicalCell physiologyCharacteristicsCollectionCommunitiesComprehensionDNADNA BindingDNA Microarray ChipDataData AnalysesData SetDependencyDevelopmentDiseaseDrosophila genusExhibitsFunctional RNAFunctional disorderGeneral Transcription FactorsGenomeGenomicsHumanHuman GenomeIndiumInternetJUN geneLengthLinkLocationMethodologyMethodsMicroarray AnalysisModelingMusNatureOligonucleotide MicroarraysPlayProceduresRattusResearchResearch PersonnelResolutionReverse Transcriptase Polymerase Chain ReactionRoleRunningSample SizeSensitivity and SpecificitySequence AnalysisSimulateStagingStatistical MethodsStructureTechnologyTimeTrainingTranscription Factor TFIIDValidationc-Myc Staining Methodchromatin immunoprecipitationcostdensitydesigngenome sequencinggenome wide association studygenome-widehuman GATA1 proteinhuman embryonic stem cell lineimprovedinnovationnovelopen sourceprogramsresearch studyresponseserial analysis of gene expressionsoftware developmenttooltranscription factorweb site
项目摘要
DESCRIPTION (provided by applicant): With many genome-sequencing projects coming to an end, the biggest remaining challenge is to comprehend the information encoded in these sequences. Identifying interactions between transcription factors (TFs) and their DMA binding sites is an integral part of this challenge. These interactions control critical steps in cell functions, and their dysfunction can significantly contribute to the progression of various diseases. ChlP-chip experiments that couple chromatin immunoprecipitation with DMA microarray analysis have become powerful tools for the genome-wide identification and characterization of transcription factor binding sites. These experiments produce massive amounts of noisy data with small number of replicates and therefore require innovative robust statistical analysis methods. The objectives of this proposal are to develop, evaluate and disseminate statistical methods for analyzing data from ChlP-chip experiments. These objectives will be accomplished through four specific aims: (1) Development of robust probabilistic methods for detecting TF bound regions. These methods will utilize the information common across probes on tiling arrays to increase power in small sample sizes. (2) Extension of the methods in Aim-1 to deal with array designs where probe sequences overlap and observations from nearby probes exhibit long-range spatial dependencies. As a result, we will develop rigorous statistical inference procedures for general tiling array designs. (3) Development of an adaptive framework for incorporating quantitative information from ChlP-chip experiments into motif finding. This will connect the first stage of the ChlP-chip data analysis, namely identification of the bound regions, with the downstream sequence analysis thereby boosting the sensitivity and specificity of the motif finding task. (4) Implementation of the statistical methods developed as part of this research in statistical packages. The resulting packages will be available to the scientific community both in stand-alone versions and as part of the Bioconductor Project which is an open source and development software project for the analysis of the genomic data. Successful completion of the proposed research will result in substantially improved statistical methods for the analysis of ChlP-chip experiments.
描述(由申请人提供):随着许多基因组序列项目即将结束,剩下的最大挑战是理解这些序列中编码的信息。识别转录因子(TF)与其DMA结合位点之间的相互作用是这一挑战的组成部分。这些相互作用控制细胞功能中的关键步骤,它们的功能障碍可以显着有助于各种疾病的发展。将染色质免疫沉淀与DMA微阵列分析的CHLP-CHIP实验已成为转录因子结合位点的全基因组鉴定和表征的强大工具。这些实验可产生大量的嘈杂数据,并具有少量的重复数据,因此需要创新的鲁棒统计分析方法。该提案的目标是开发,评估和传播统计方法,以分析CHLP-CHIP实验的数据。这些目标将通过四个特定目的来实现:(1)开发用于检测TF边界区域的强大概率方法。这些方法将利用整个探针上常见的信息,以增加小样本量的功率。 (2)AIM-1中的方法扩展以处理阵列设计,其中探针序列重叠和附近探针的观察结果表现出长距离空间依赖性。结果,我们将为一般平铺阵列设计开发严格的统计推理程序。 (3)开发一个自适应框架,将CHLP-CHIP实验中的定量信息纳入基序发现。这将连接CHLP-CHIP数据分析的第一阶段,即对边界区域的识别,并将下游序列分析与下游序列分析联系起来,从而提高了基序查找任务的灵敏度和特异性。 (4)在统计软件包中开发的统计方法的实施。所得的包裹将以独立版本和生物导体项目的一部分提供给科学界,这是一个开源和开发软件项目,用于分析基因组数据。成功完成拟议的研究将导致大大改善CHLP-CHIP实验分析的统计方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sunduz Keles其他文献
Sunduz Keles的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sunduz Keles', 18)}}的其他基金
Statistical methods for co-expression network analysis of population-scale scRNA-seq data
群体规模 scRNA-seq 数据共表达网络分析的统计方法
- 批准号:
10740240 - 财政年份:2023
- 资助金额:
$ 28.47万 - 项目类别:
Functionally relevant mapping of human GWAS SNPs on model organisms
人类 GWAS SNP 在模式生物上的功能相关图谱
- 批准号:
10056966 - 财政年份:2020
- 资助金额:
$ 28.47万 - 项目类别:
Statistical Power Calculations for ChIP-seq experiments
ChIP-seq 实验的统计功效计算
- 批准号:
8284083 - 财政年份:2012
- 资助金额:
$ 28.47万 - 项目类别:
High dimensional statistical data modeling and integration for studying regulatory variation
用于研究监管变化的高维统计数据建模和集成
- 批准号:
10413927 - 财政年份:2007
- 资助金额:
$ 28.47万 - 项目类别:
Statistical Analysis Methods and Software for ChIP-seq Data
ChIP-seq 数据的统计分析方法和软件
- 批准号:
8785690 - 财政年份:2007
- 资助金额:
$ 28.47万 - 项目类别:
Statistical Methods for the Analysis of ChlP-chip Data
ChlP 芯片数据分析的统计方法
- 批准号:
7253510 - 财政年份:2007
- 资助金额:
$ 28.47万 - 项目类别:
Statistical Analysis Methods and Software for ChIP-seq Data
ChIP-seq 数据的统计分析方法和软件
- 批准号:
8605900 - 财政年份:2007
- 资助金额:
$ 28.47万 - 项目类别:
Statistical Analysis Methods and Software for ChIP-seq Data
ChIP-seq 数据的统计分析方法和软件
- 批准号:
8370723 - 财政年份:2007
- 资助金额:
$ 28.47万 - 项目类别:
High dimensional statistical data integration for studying regulatory variation
用于研究监管变化的高维统计数据集成
- 批准号:
9344668 - 财政年份:2007
- 资助金额:
$ 28.47万 - 项目类别:
Statistical Methods for the Analysis of ChlP-chip Data
ChlP 芯片数据分析的统计方法
- 批准号:
7799293 - 财政年份:2007
- 资助金额:
$ 28.47万 - 项目类别:
相似国自然基金
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
资源受限下集成学习算法设计与硬件实现研究
- 批准号:62372198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于物理信息神经网络的电磁场快速算法研究
- 批准号:52377005
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
- 批准号:12302257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向高维不平衡数据的分类集成算法研究
- 批准号:62306119
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
In Silico Drug Design Targeting RNA Repeat Expansions
针对 RNA 重复扩增的计算机药物设计
- 批准号:
10439166 - 财政年份:2022
- 资助金额:
$ 28.47万 - 项目类别:
Developing three-dimensional antisense oligonucleotide drugs against COVID-19
开发针对COVID-19的三维反义寡核苷酸药物
- 批准号:
10645137 - 财政年份:2021
- 资助金额:
$ 28.47万 - 项目类别:
Combined computational and structural studies to create novel macromolecular recognition properties
结合计算和结构研究来创造新的大分子识别特性
- 批准号:
10543489 - 财政年份:2021
- 资助金额:
$ 28.47万 - 项目类别:
Developing three-dimensional antisense oligonucleotide drugs against COVID-19
开发针对COVID-19的三维反义寡核苷酸药物
- 批准号:
10453620 - 财政年份:2021
- 资助金额:
$ 28.47万 - 项目类别:
Developing three-dimensional antisense oligonucleotide drugs against COVID-19
开发针对COVID-19的三维反义寡核苷酸药物
- 批准号:
10280762 - 财政年份:2021
- 资助金额:
$ 28.47万 - 项目类别: