High dimensional statistical data integration for studying regulatory variation
用于研究监管变化的高维统计数据集成
基本信息
- 批准号:9344668
- 负责人:
- 金额:$ 32.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-04-26 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressBindingBinding SitesBioconductorBiologic CharacteristicCellsChIP-seqChromatinCollectionCommunitiesComputer AnalysisComputer softwareDNADNA MethylationDNA-Protein InteractionDataData SetData SourcesDerivation procedureDevelopmentDiagnosisDiseaseElementsGalaxyGenerationsGeneticGenetic TranscriptionGenomeGenomicsGenotypeHistonesHumanIndividualInternationalInvestigationJointsKnowledgeLettersLocationMapsMessenger RNAMethodologyMethodsPhenotypeProtein IsoformsRNARNA analysisRNA-Binding ProteinsRNA-Protein InteractionRegulationRepetitive SequenceResearchResearch PersonnelResourcesSamplingSourceStatistical Data InterpretationStatistical MethodsStatistical ModelsTechnologyTissuesTrainingUntranslated RNAValidationVariantbasecell typecrosslinking and immunoprecipitation sequencingdata integrationepigenomeexperienceexperimental studygenetic variantgenome wide association studygenome-widegenomic datagenomic profileshigh dimensionalityhigh throughput technologyhistone modificationhuman diseaseimprovedinnovationnext generation sequencingnovelprotein profilingreference genomesimulationtooltraittranscription factorwhole genome
项目摘要
Project Summary
Next generation sequencing (NGS) technologies revolutionized the fields of genetics and
genomics by allowing rapid and inexpensive sequencing of billions of bases. Although
basic analysis tools for each individual data type are abundant, statistical methods that
can integrate different sources of data for addressing key, challenging questions are
lacking. We propose to develop integrative methods for critical, widely used, applications
urgently requiring reliable statistical integration tools. At the core of our methods is
effective integration of multiple appropriate data types with novel statistical methods.
First, although, to date, large numbers of protein-DNA interactions and histone
modifications are mapped, systematic methods that allow users to query these data and
generate testable hypotheses are lacking. Second, in parallel to generation of
(epi)genomic profiles, genome-wide association studies (GWAS) have been successful
at identifying disease and trait-associated genetic variants (GVs). However, our ability to
identify causal variants and elucidate the mechanisms by which genotypes influence
phenotypes is hampered by significant obstacles. Third, although the utility of reads that
map to multiple locations on the reference genome (multi-reads) has been well
established for some NGS applications such as RNA-seq and ChIP-seq, all the analysis
methods for the emerging data type CLIP-seq that interrogates RNA binding proteins
rely on using only reads that map uniquely to reference genome (uni-reads) leading to
unreliable inference. We plan to address these critical challenges by developing (1) Fast
and scalable integrative statistical methods for joint analysis of multiple ChIP-seq
datasets to enable both individual data level inference and identification of joint effects;
(2) A statistical analysis framework for integrating GWAS results with the increasing
numbers of genome-wide maps of functional annotations; (3) An integrative multi-read
mapping framework for studying RNA-protein interactions through CLIP-seq
experiments. The projects will be accomplished through a combination of methodological
development, simulation, computational analysis, and experimental validation. Methods
will be developed and evaluated using datasets from the ENCODE and REMC as well
as novel datasets from collaborators. Statistical resources generated from the project will
be disseminated in publicly available software. Collectively, these aims will significantly
improve the utility of genome-wide data types that are available to researchers.
项目摘要
下一代测序(NGS)技术彻底改变了遗传学和
通过允许数十亿个碱基的快速和廉价的测序通过基因组学。虽然
每种数据类型的基本分析工具都是丰富的统计方法
可以整合不同的数据来源以解决密钥,具有挑战性的问题是
缺乏。我们建议为关键,广泛使用的应用程序开发整合方法
紧急需要可靠的统计集成工具。我们方法的核心是
有效地集成了多种适当的数据类型与新型统计方法。
首先,虽然迄今为止,大量蛋白质-DNA相互作用和组蛋白
修改是映射的,系统的方法,允许用户查询这些数据和
缺乏生成可检验的假设。其次,与一代平行
(EPI)基因组谱,全基因组关联研究(GWAS)已成功
在鉴定疾病和性状相关的遗传变异(GVS)方面。但是,我们的能力
识别因果变异并阐明基因型影响的机制
表型受到重大障碍的阻碍。第三,尽管效用是
参考基因组(多阅读)上的多个位置的地图已经很好
为某些NGS应用(例如RNA-Seq和Chip-Seq)建立,所有分析
新兴数据类型夹式seq的方法,该夹子询问RNA结合蛋白
依靠仅使用读取唯一映射的读物来参考基因组(UNI-Reads),导致
不可靠的推理。我们计划通过快速开发(1)来应对这些关键挑战
以及可扩展的集成统计方法,用于联合分析多个CHIP-SEQ
数据集以实现单个数据水平推断和关节效应的识别;
(2)将GWAS结果整合到增加的统计分析框架
功能注释的全基因组图数; (3)综合多阅读
通过夹式研究RNA - 蛋白质相互作用的映射框架
实验。这些项目将通过方法学的结合来完成
开发,仿真,计算分析和实验验证。方法
将使用来自Encode和REMC的数据集开发和评估
作为合作者的新颖数据集。项目产生的统计资源将
被公开软件传播。总的来说,这些目标将显着
改善研究人员可用的全基因组数据类型的效用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sunduz Keles其他文献
Sunduz Keles的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sunduz Keles', 18)}}的其他基金
Statistical methods for co-expression network analysis of population-scale scRNA-seq data
群体规模 scRNA-seq 数据共表达网络分析的统计方法
- 批准号:
10740240 - 财政年份:2023
- 资助金额:
$ 32.5万 - 项目类别:
Functionally relevant mapping of human GWAS SNPs on model organisms
人类 GWAS SNP 在模式生物上的功能相关图谱
- 批准号:
10056966 - 财政年份:2020
- 资助金额:
$ 32.5万 - 项目类别:
Statistical Power Calculations for ChIP-seq experiments
ChIP-seq 实验的统计功效计算
- 批准号:
8284083 - 财政年份:2012
- 资助金额:
$ 32.5万 - 项目类别:
High dimensional statistical data modeling and integration for studying regulatory variation
用于研究监管变化的高维统计数据建模和集成
- 批准号:
10413927 - 财政年份:2007
- 资助金额:
$ 32.5万 - 项目类别:
Statistical Analysis Methods and Software for ChIP-seq Data
ChIP-seq 数据的统计分析方法和软件
- 批准号:
8785690 - 财政年份:2007
- 资助金额:
$ 32.5万 - 项目类别:
Statistical Methods for the Analysis of ChlP-chip Data
ChlP 芯片数据分析的统计方法
- 批准号:
7253510 - 财政年份:2007
- 资助金额:
$ 32.5万 - 项目类别:
Statistical Analysis Methods and Software for ChIP-seq Data
ChIP-seq 数据的统计分析方法和软件
- 批准号:
8605900 - 财政年份:2007
- 资助金额:
$ 32.5万 - 项目类别:
Statistical Analysis Methods and Software for ChIP-seq Data
ChIP-seq 数据的统计分析方法和软件
- 批准号:
8370723 - 财政年份:2007
- 资助金额:
$ 32.5万 - 项目类别:
Statistical Methods for the Analysis of ChlP-chip Data
ChlP 芯片数据分析的统计方法
- 批准号:
7799293 - 财政年份:2007
- 资助金额:
$ 32.5万 - 项目类别:
High dimensional statistical data modeling and integration for studying regulatory variation
用于研究监管变化的高维统计数据建模和集成
- 批准号:
10610872 - 财政年份:2007
- 资助金额:
$ 32.5万 - 项目类别:
相似国自然基金
结合态抗生素在水产品加工过程中的消解机制与产物毒性解析
- 批准号:32302247
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ABHD6与AMPA受体结合位点的鉴定及该位点在AMPA受体转运和功能调控中的作用研究
- 批准号:32300794
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
α-突触核蛋白与脂肪酸结合蛋白FABP3相互作用维持自身低聚体形态的机制研究
- 批准号:82301632
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于荧光共振能量转移机理构建多肽荧光探针用于可视化Zn2+结合SQSTM1/p62调节自噬在前列腺癌去势耐受中的作用机制
- 批准号:82303568
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
手性氢键供体与阴离子结合催化乙烯基醚的立体选择性阳离子聚合
- 批准号:22301279
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
A role for cardiomyocyte pannexin 1 in non-ischemic heart failure
心肌细胞pannexin 1在非缺血性心力衰竭中的作用
- 批准号:
10680109 - 财政年份:2023
- 资助金额:
$ 32.5万 - 项目类别:
Selective C(sp3)–H Functionalization Enabled by Metal-Organic Framework Catalysis
金属有机框架催化实现选择性 C(sp3)–H 官能化
- 批准号:
10679785 - 财政年份:2023
- 资助金额:
$ 32.5万 - 项目类别:
Elucidating single cell changes in neurogenic brain regions during HIV and cannabinoid exposure
阐明艾滋病毒和大麻素暴露期间神经源性大脑区域的单细胞变化
- 批准号:
10686685 - 财政年份:2023
- 资助金额:
$ 32.5万 - 项目类别:
Sharp Neonatal Research Institute Clinical Center (Sharp NRI-CC)
夏普新生儿研究所临床中心 (Sharp NRI-CC)
- 批准号:
10683030 - 财政年份:2023
- 资助金额:
$ 32.5万 - 项目类别:
Biology the initiator: Harnessing Reactive Oxygen Species for Biocompatible Polymerization
生物学引发者:利用活性氧进行生物相容性聚合
- 批准号:
10667740 - 财政年份:2023
- 资助金额:
$ 32.5万 - 项目类别: