High dimensional statistical data modeling and integration for studying regulatory variation
用于研究监管变化的高维统计数据建模和集成
基本信息
- 批准号:10610872
- 负责人:
- 金额:$ 37.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-04-26 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Project Summary
Gene regulatory programs of mammalian cells are largely influenced by long-range
chromatin interactions. We propose to develop robust and scalable statistical methods
for two critical genomic inference problems hinging upon long-range chromatin
interactions. First, the study of long-range interactions at the single cell-level with 3C-
based method scHi-C is fundamental to fully understanding cell type-specific gene
regulation. scHi-C measurements harbor unexplored biological diversity. However, these
measurements are prone to extreme sparsity, technological bias, and noise. While initial
inference methods simply focused on lower dimensional representations of scHi-C data,
lack of a scalable framework that can exploit nonlinearities in de-noising of the data
impedes key inference tasks from these experiments. We will address these critical
shortcomings by developing a novel deep generative model for scHi-C data. By de-
noising the data, these methods will improve the power with which signals of interest can
be studied. Second, while advances in sequencing and large-scale availability of
epigenome data improved the power and interpretation of genome-wide association
studies (GWAS), shortcomings in identifying which genes noncoding SNPs might be
impacting through long-range chromatin interactions hinder the translation of GWAS
findings into clinical interventions. Leveraging existing large-scale studies of diversity
outbred mice, we will develop a rigorous framework that integrates multi-omics functional
data modalities to fine-map model organism molecular quantitative trait loci and transfer
the results to humans for linking noncoding GWAS SNPs to their effector, i.e.,
susceptibility, genes. Large-scale application with type 2 diabetes (T2D) traits will deliver
candidate T2D effector genes and their regulatory loci that are amenable for
experimental follow-up. Both aims will be accomplished through a combination of
methodological development, theoretical analysis, data-driven simulation, computational
analysis, and experimental validation. Statistical resources generated from this project
will be disseminated as open-source software. Successful completion of the project will
help to ensure that maximal information is obtained from powerful scHi-C experiments
and model organism multi-omics data.
项目摘要
哺乳动物细胞的基因调节程序在很大程度上受远距离的影响
染色质相互作用。我们建议开发可靠且可扩展的统计方法
对于两个关键的基因组推断问题,在远距离染色质上取决于
互动。首先,研究单细胞水平与3C-的远程相互作用的研究
基于基于细胞类型特异性基因的方法是基础
规定。 SCHI-C测量值未开发生物学多样性。但是,这些
测量很容易出现极端的稀疏性,技术偏见和噪音。初始
推理方法只是专注于schi-c数据的较低维表示,
缺乏可扩展的框架,该框架可以利用数据降低数据
阻碍了这些实验的关键推理任务。我们将解决这些关键
通过为SCHI-C数据开发新颖的深层生成模型来构成缺点。通过
缩小数据,这些方法将提高感兴趣的信号可以的功能
被研究。其次,虽然测序和大规模可用性的进展
表观基因组数据改善了全基因组关联的能力和解释
研究(GWAS),识别哪些基因非编码SNP的缺点可能是
通过远程染色质相互作用影响GWAS的翻译
发现临床干预措施。利用现有的大规模多样性研究
杂种鼠标,我们将开发一个严格的框架,以整合多词的功能
数据模态至微图模型有机体分子定量性状基因座和转移
人类将非编码GWAS SNP与其效应子联系起来的结果,即
敏感性,基因。大规模应用2型糖尿病(T2D)特征将提供
候选T2D效应子基因及其调节基因座
实验随访。这两个目标都将通过结合
方法发展,理论分析,数据驱动模拟,计算
分析和实验验证。该项目产生的统计资源
将作为开源软件传播。成功完成项目将
帮助确保从强大的SCHI-C实验获得最大信息
和模型有机体多摩学数据。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Sunduz Keles的其他基金
Statistical methods for co-expression network analysis of population-scale scRNA-seq data
群体规模 scRNA-seq 数据共表达网络分析的统计方法
- 批准号:1074024010740240
- 财政年份:2023
- 资助金额:$ 37.88万$ 37.88万
- 项目类别:
Functionally relevant mapping of human GWAS SNPs on model organisms
人类 GWAS SNP 在模式生物上的功能相关图谱
- 批准号:1005696610056966
- 财政年份:2020
- 资助金额:$ 37.88万$ 37.88万
- 项目类别:
Statistical Power Calculations for ChIP-seq experiments
ChIP-seq 实验的统计功效计算
- 批准号:82840838284083
- 财政年份:2012
- 资助金额:$ 37.88万$ 37.88万
- 项目类别:
High dimensional statistical data modeling and integration for studying regulatory variation
用于研究监管变化的高维统计数据建模和集成
- 批准号:1041392710413927
- 财政年份:2007
- 资助金额:$ 37.88万$ 37.88万
- 项目类别:
Statistical Analysis Methods and Software for ChIP-seq Data
ChIP-seq 数据的统计分析方法和软件
- 批准号:86059008605900
- 财政年份:2007
- 资助金额:$ 37.88万$ 37.88万
- 项目类别:
Statistical Analysis Methods and Software for ChIP-seq Data
ChIP-seq 数据的统计分析方法和软件
- 批准号:87856908785690
- 财政年份:2007
- 资助金额:$ 37.88万$ 37.88万
- 项目类别:
Statistical Methods for the Analysis of ChlP-chip Data
ChlP 芯片数据分析的统计方法
- 批准号:72535107253510
- 财政年份:2007
- 资助金额:$ 37.88万$ 37.88万
- 项目类别:
Statistical Analysis Methods and Software for ChIP-seq Data
ChIP-seq 数据的统计分析方法和软件
- 批准号:83707238370723
- 财政年份:2007
- 资助金额:$ 37.88万$ 37.88万
- 项目类别:
Statistical Methods for the Analysis of ChlP-chip Data
ChlP 芯片数据分析的统计方法
- 批准号:77992937799293
- 财政年份:2007
- 资助金额:$ 37.88万$ 37.88万
- 项目类别:
High dimensional statistical data integration for studying regulatory variation
用于研究监管变化的高维统计数据集成
- 批准号:93446689344668
- 财政年份:2007
- 资助金额:$ 37.88万$ 37.88万
- 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Statistical methods for differential peak detection in Hi-C data
Hi-C 数据中差分峰检测的统计方法
- 批准号:97609839760983
- 财政年份:2019
- 资助金额:$ 37.88万$ 37.88万
- 项目类别:
Statistical methods for differential peak detection in Hi-C data
Hi-C 数据中差分峰检测的统计方法
- 批准号:99041239904123
- 财政年份:2019
- 资助金额:$ 37.88万$ 37.88万
- 项目类别:
High dimensional statistical data modeling and integration for studying regulatory variation
用于研究监管变化的高维统计数据建模和集成
- 批准号:1041392710413927
- 财政年份:2007
- 资助金额:$ 37.88万$ 37.88万
- 项目类别:
High dimensional statistical data modeling and integration for studying regulatory variation
用于研究监管变化的高维统计数据建模和集成
- 批准号:1021330810213308
- 财政年份:2007
- 资助金额:$ 37.88万$ 37.88万
- 项目类别:
Nucleoporins as epigenomic regulators of cardiogenesis
核孔蛋白作为心脏发生的表观基因组调节剂
- 批准号:97672279767227
- 财政年份:
- 资助金额:$ 37.88万$ 37.88万
- 项目类别: