High dimensional statistical data modeling and integration for studying regulatory variation
用于研究监管变化的高维统计数据建模和集成
基本信息
- 批准号:10413927
- 负责人:
- 金额:$ 37.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-04-26 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAnimal ModelBioconductorBiodiversityBiologic CharacteristicBiologicalCellsChromatinClinicalCommunitiesComputer AnalysisComputer softwareDataData AnalyticsData SetDevelopmentDimensionsDiseaseEnsureEnvironmental Risk FactorGene Expression RegulationGenesGenetic TranslationGenomeGenomic SegmentGenomicsHeterogeneityHi-CHumanHuman GenomeIndividualInterventionJuiceLeadLinkMammalian CellMapsMeasurementMediatingMethodologyMethodsModalityModelingMolecularMolecular ConformationMultiomic DataMusNatureNoiseNon-Insulin-Dependent Diabetes MellitusNucleotidesPhenotypePropertyQuantitative Trait LociRegulator GenesResearchResolutionResourcesRiskRoleSignal TransductionSourceStatistical MethodsSusceptibility GeneTechnologyTrainingTranslationsUntranslated RNAValidationVariantautoencodercell typechromosome conformation capturedata integrationdata modelingdenoisingepigenomeepigenomicsexperimental studyflexibilityfollow-upgenome wide association studyhigh dimensionalityhigh throughput technologyimprovedinnovationinterestmultiple omicsnovelopen sourceprogramsrisk variantscale upsimulationsingle cell sequencingtraittranscriptomics
项目摘要
Project Summary
Gene regulatory programs of mammalian cells are largely influenced by long-range
chromatin interactions. We propose to develop robust and scalable statistical methods
for two critical genomic inference problems hinging upon long-range chromatin
interactions. First, the study of long-range interactions at the single cell-level with 3C-
based method scHi-C is fundamental to fully understanding cell type-specific gene
regulation. scHi-C measurements harbor unexplored biological diversity. However, these
measurements are prone to extreme sparsity, technological bias, and noise. While initial
inference methods simply focused on lower dimensional representations of scHi-C data,
lack of a scalable framework that can exploit nonlinearities in de-noising of the data
impedes key inference tasks from these experiments. We will address these critical
shortcomings by developing a novel deep generative model for scHi-C data. By de-
noising the data, these methods will improve the power with which signals of interest can
be studied. Second, while advances in sequencing and large-scale availability of
epigenome data improved the power and interpretation of genome-wide association
studies (GWAS), shortcomings in identifying which genes noncoding SNPs might be
impacting through long-range chromatin interactions hinder the translation of GWAS
findings into clinical interventions. Leveraging existing large-scale studies of diversity
outbred mice, we will develop a rigorous framework that integrates multi-omics functional
data modalities to fine-map model organism molecular quantitative trait loci and transfer
the results to humans for linking noncoding GWAS SNPs to their effector, i.e.,
susceptibility, genes. Large-scale application with type 2 diabetes (T2D) traits will deliver
candidate T2D effector genes and their regulatory loci that are amenable for
experimental follow-up. Both aims will be accomplished through a combination of
methodological development, theoretical analysis, data-driven simulation, computational
analysis, and experimental validation. Statistical resources generated from this project
will be disseminated as open-source software. Successful completion of the project will
help to ensure that maximal information is obtained from powerful scHi-C experiments
and model organism multi-omics data.
项目摘要
哺乳动物细胞的基因调节程序在很大程度上受远距离的影响
染色质相互作用。我们建议开发可靠且可扩展的统计方法
对于两个关键的基因组推断问题,在远距离染色质上取决于
互动。首先,研究单细胞水平与3C-的远程相互作用的研究
基于基于细胞类型特异性基因的方法是基础
规定。 SCHI-C测量值未开发生物学多样性。但是,这些
测量很容易出现极端的稀疏性,技术偏见和噪音。初始
推理方法只是专注于schi-c数据的较低维表示,
缺乏可扩展的框架,该框架可以利用数据降低数据
阻碍了这些实验的关键推理任务。我们将解决这些关键
通过为SCHI-C数据开发新颖的深层生成模型来构成缺点。通过
缩小数据,这些方法将提高感兴趣的信号可以的功能
被研究。其次,虽然测序和大规模可用性的进展
表观基因组数据改善了全基因组关联的能力和解释
研究(GWAS),识别哪些基因非编码SNP的缺点可能是
通过远程染色质相互作用影响GWAS的翻译
发现临床干预措施。利用现有的大规模多样性研究
杂种鼠标,我们将开发一个严格的框架,以整合多词的功能
数据模态至微图模型有机体分子定量性状基因座和转移
人类将非编码GWAS SNP与其效应子联系起来的结果,即
敏感性,基因。大规模应用2型糖尿病(T2D)特征将提供
候选T2D效应子基因及其调节基因座
实验随访。这两个目标都将通过结合
方法发展,理论分析,数据驱动模拟,计算
分析和实验验证。该项目产生的统计资源
将作为开源软件传播。成功完成项目将
帮助确保从强大的SCHI-C实验获得最大信息
和模型有机体多摩学数据。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sunduz Keles其他文献
Sunduz Keles的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sunduz Keles', 18)}}的其他基金
Statistical methods for co-expression network analysis of population-scale scRNA-seq data
群体规模 scRNA-seq 数据共表达网络分析的统计方法
- 批准号:
10740240 - 财政年份:2023
- 资助金额:
$ 37.88万 - 项目类别:
Functionally relevant mapping of human GWAS SNPs on model organisms
人类 GWAS SNP 在模式生物上的功能相关图谱
- 批准号:
10056966 - 财政年份:2020
- 资助金额:
$ 37.88万 - 项目类别:
Statistical Power Calculations for ChIP-seq experiments
ChIP-seq 实验的统计功效计算
- 批准号:
8284083 - 财政年份:2012
- 资助金额:
$ 37.88万 - 项目类别:
Statistical Analysis Methods and Software for ChIP-seq Data
ChIP-seq 数据的统计分析方法和软件
- 批准号:
8605900 - 财政年份:2007
- 资助金额:
$ 37.88万 - 项目类别:
Statistical Analysis Methods and Software for ChIP-seq Data
ChIP-seq 数据的统计分析方法和软件
- 批准号:
8785690 - 财政年份:2007
- 资助金额:
$ 37.88万 - 项目类别:
Statistical Methods for the Analysis of ChlP-chip Data
ChlP 芯片数据分析的统计方法
- 批准号:
7253510 - 财政年份:2007
- 资助金额:
$ 37.88万 - 项目类别:
Statistical Analysis Methods and Software for ChIP-seq Data
ChIP-seq 数据的统计分析方法和软件
- 批准号:
8370723 - 财政年份:2007
- 资助金额:
$ 37.88万 - 项目类别:
Statistical Methods for the Analysis of ChlP-chip Data
ChlP 芯片数据分析的统计方法
- 批准号:
7799293 - 财政年份:2007
- 资助金额:
$ 37.88万 - 项目类别:
High dimensional statistical data integration for studying regulatory variation
用于研究监管变化的高维统计数据集成
- 批准号:
9344668 - 财政年份:2007
- 资助金额:
$ 37.88万 - 项目类别:
High dimensional statistical data modeling and integration for studying regulatory variation
用于研究监管变化的高维统计数据建模和集成
- 批准号:
10610872 - 财政年份:2007
- 资助金额:
$ 37.88万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 37.88万 - 项目类别:
Optimization of electromechanical monitoring of engineered heart tissues
工程心脏组织机电监测的优化
- 批准号:
10673513 - 财政年份:2023
- 资助金额:
$ 37.88万 - 项目类别:
Commercial translation of high-density carbon fiber electrode arrays for multi-modal analysis of neural microcircuits
用于神经微电路多模态分析的高密度碳纤维电极阵列的商业转化
- 批准号:
10761217 - 财政年份:2023
- 资助金额:
$ 37.88万 - 项目类别:
High-resolution cerebral microvascular imaging for characterizing vascular dysfunction in Alzheimer's disease mouse model
高分辨率脑微血管成像用于表征阿尔茨海默病小鼠模型的血管功能障碍
- 批准号:
10848559 - 财政年份:2023
- 资助金额:
$ 37.88万 - 项目类别:
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
- 批准号:
10727940 - 财政年份:2023
- 资助金额:
$ 37.88万 - 项目类别: