A Neuropeptidergic Neural Network Integrates Taste with Internal State to Modulate Feeding
神经肽能神经网络将味觉与内部状态相结合来调节进食
基本信息
- 批准号:10734258
- 负责人:
- 金额:$ 45.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-08 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:AbdomenAddressAdultAffectAgricultureAnatomyAnimalsAnteriorAreaBehaviorBehavioralBrainCalciumCaloriesComplementDataDecision MakingDesire for foodDigestionDiscriminationDiseaseDisease VectorsDiureticsDrosophila genusEquilibriumEvaluationExposure toFeeding behaviorsFoodFood PreferencesGlucagonGlucoseHealthHemolymphHormonesHornsHumanHungerImageIngestionInsect ControlInsectaIon TransportLabelLateralLocationMalnutritionMalpighian TubulesMammalsMapsMetabolicMethodsMorbidity - disease rateMushroom BodiesNerveNeuromodulatorNeuronsNeuropeptidesNeuropilNutrientNutrition AssessmentNutritionalObesityOrganPeptide TransportProcessPublishingReceptor ActivationRegulationResearchResolutionRoleSatiationShapesSignal TransductionSiteSourceStereotyped BehaviorStereotypingStreamStructureSynapsesSystemTachykininTaste PerceptionTechniquesTechnologyTestingToxinWateradipokinetic hormoneanalogconnectomecorpus cardiacumexperimental studyfeedingflyfood qualityin vivointerestmodel organismmutantneuralneural networkneuromechanismneuropeptide Fneuroregulationpostsynaptic neuronsreceptorreceptor expressionreduced food intakeresponsesugartool
项目摘要
Feeding is a fundamental behavior that is tightly regulated to precisely meet the metabolic needs of the animal.
The primary decision that an animal must make regarding food is whether to ingest it or reject it. Substances
with high nutritional value are ingested, while toxins and harmful substances are rejected. To make this decision,
the animal relies on its sense of taste to evaluate the quality of the food. Most animals respond to sweet and
bitter tastants with different stereotyped behaviors: sweet substances, often calorie rich, are appetitive and
accepted, while bitter compounds, usually harmful, are rejected and avoided. Another important part of the
decision whether to ingest or reject potential food is the metabolic need of the animal that is manifested by the
balance between hunger and satiety. This aspect of the internal state of the animals is evaluated through an
intricate balance between various hormones and neuromodulators, some signal hunger while the others signal
satiety. How the concerted action of the various hormones and neuromodulators affects feeding is an area of
significant interest as dysregulation of feeding behavior results in obesity or in malnutrition and their associated
morbidities.
In this proposal, we focus on one network of neuromodulatory neurons in Drosophila in which a neuromodulator
termed leucokinin is secreted by certain subsets of neurons within the network and detected by others. We
propose to test the hypothesis that the leucokinin network of neuromodulatory neurons integrates information
about taste quality and the internal state of the fly to modulates feeding behavior. In this network, one set of
neurons receives inputs from two others: taste information from one, and information about the internal state of
the animal from the other. The recipient neurons integrate the two streams of information and in turn modulate
feeding behavior by secreting other neuropeptides that regulate feeding. To test this hypothesis, we use a
multipronged approach that includes anatomical, functional and behavioral analyses. In our proposed study, we
use state of the art techniques to label neuronal connectivity and to manipulate the activity of selective subsets
of neurons to examine the behavioral and functional effects of these manipulations. We also develop a new
technique for studying sites of neuromodulation. This technique enables selective, unbiased, brain-wide
examination of sites of neuromodulation by specific modulators with cellular resolution. Thus, our studies will
deepen our understanding of the regulation of feeding and provide new tools to study neuromodulation, a
research area that will increase in importance as neural connectivity maps of more model organisms become
available.
喂养是一种基本行为,受到严格监管,以精确满足动物的代谢需求。
动物对于食物必须做出的首要决定是摄入还是拒绝。物质
营养价值高的物质被摄入,毒素和有害物质被排除。为了做出这个决定,
动物依靠其味觉来评价食物的质量。大多数动物对甜食有反应
苦味促味剂具有不同的刻板行为:甜味物质,通常热量丰富,具有食欲和
接受,而通常有害的苦味化合物则被拒绝和避免。该计划的另一个重要部分
决定是否摄入或拒绝潜在的食物是动物的代谢需求,表现为
饥饿与饱足之间的平衡。动物内部状态的这个方面是通过以下方式进行评估的:
各种激素和神经调节剂之间错综复杂的平衡,一些信号发出饥饿信号,而另一些则发出信号
饱腹感。各种激素和神经调节剂的协同作用如何影响喂养是一个领域
喂养行为失调会导致肥胖或营养不良及其相关
发病率。
在这项提案中,我们重点关注果蝇中的一个神经调节神经元网络,其中神经调节剂
被称为白细胞激肽的神经元由网络内的某些神经元子集分泌并被其他神经元检测到。我们
提出检验神经调节神经元的白细胞激肽网络整合信息的假设
关于果蝇的味觉质量和内部状态来调节采食行为。在这个网络中,一组
神经元接收来自另外两个神经元的输入:来自一个神经元的味道信息以及有关内部状态的信息
动物与其他动物的区别。接收神经元整合两个信息流并依次调节
通过分泌其他调节摄食的神经肽来控制摄食行为。为了检验这个假设,我们使用
多管齐下的方法,包括解剖学、功能和行为分析。在我们提出的研究中,我们
使用最先进的技术来标记神经元连接并操纵选择性子集的活动
神经元来检查这些操作的行为和功能影响。我们还开发了一种新的
研究神经调节位点的技术。该技术能够实现选择性、公正、全脑
通过细胞分辨率检查特定调节剂的神经调节位点。因此,我们的研究将
加深我们对进食调节的理解,并为研究神经调节提供新工具,
随着更多模式生物的神经连接图变得越来越重要,该研究领域将变得越来越重要
可用的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gilad Barnea其他文献
Gilad Barnea的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gilad Barnea', 18)}}的其他基金
Sensorimotor Transformations for Controlling Heading Direction in the Insect Central Complex
昆虫中央复合体控制前进方向的感觉运动变换
- 批准号:
10717148 - 财政年份:2023
- 资助金额:
$ 45.29万 - 项目类别:
Molecular Multi-Species Approach for Trans-Synaptic Labeling of Neural Circuits
神经回路跨突触标记的分子多物种方法
- 批准号:
10009743 - 财政年份:2020
- 资助金额:
$ 45.29万 - 项目类别:
Molecular Multi-Species Approach for Trans-Synaptic Labeling of Neural Circuits - Diversity Supplement
用于神经回路跨突触标记的分子多物种方法 - Diversity Supplement
- 批准号:
10286154 - 财政年份:2020
- 资助金额:
$ 45.29万 - 项目类别:
Molecular and cellular analysis of accessory olfactory circuits in mice
小鼠辅助嗅觉回路的分子和细胞分析
- 批准号:
9816360 - 财政年份:2018
- 资助金额:
$ 45.29万 - 项目类别:
The neural circuits underlying gustatory perception in flies
果蝇味觉感知的神经回路
- 批准号:
10189547 - 财政年份:2018
- 资助金额:
$ 45.29万 - 项目类别:
Molecular and cellular analysis of accessory olfactory circuits in mice
小鼠辅助嗅觉回路的分子和细胞分析
- 批准号:
10402843 - 财政年份:2018
- 资助金额:
$ 45.29万 - 项目类别:
The neural circuits underlying gustatory perception in flies
果蝇味觉感知的神经回路
- 批准号:
10424479 - 财政年份:2018
- 资助金额:
$ 45.29万 - 项目类别:
An olfactory subsystem that mediates innate behaviors
调节先天行为的嗅觉子系统
- 批准号:
9137838 - 财政年份:2016
- 资助金额:
$ 45.29万 - 项目类别:
An olfactory subsystem that mediates innate behaviors
调节先天行为的嗅觉子系统
- 批准号:
8757671 - 财政年份:2014
- 资助金额:
$ 45.29万 - 项目类别:
Controlling epigenetic states and nuclear architecture in the brain
控制大脑中的表观遗传状态和核结构
- 批准号:
8642412 - 财政年份:2013
- 资助金额:
$ 45.29万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Inter-alpha Inhibitors in Experimental Necrotizing Enterocolitis
实验性坏死性小肠结肠炎中的α间抑制剂
- 批准号:
10822492 - 财政年份:2023
- 资助金额:
$ 45.29万 - 项目类别:
Multi-omics for obesity-associated liver disease discovery in Hispanics/Latinos: the Cameron County Hispanic Cohort
西班牙裔/拉丁裔肥胖相关肝病发现的多组学:卡梅伦县西班牙裔队列
- 批准号:
10744625 - 财政年份:2023
- 资助金额:
$ 45.29万 - 项目类别:
Development of a Novel Animal Model for Spinal Cord Injury with Sepsis
脓毒症脊髓损伤新型动物模型的开发
- 批准号:
10665862 - 财政年份:2023
- 资助金额:
$ 45.29万 - 项目类别:
Opportunistic Atherosclerotic Cardiovascular Disease Risk Estimation at Abdominal CTs with Robust and Unbiased Deep Learning
通过稳健且公正的深度学习进行腹部 CT 机会性动脉粥样硬化性心血管疾病风险评估
- 批准号:
10636536 - 财政年份:2023
- 资助金额:
$ 45.29万 - 项目类别:
Rapid Free-Breathing 3D High-Resolution MRI for Volumetric Liver Iron Quantification
用于体积肝铁定量的快速自由呼吸 3D 高分辨率 MRI
- 批准号:
10742197 - 财政年份:2023
- 资助金额:
$ 45.29万 - 项目类别: