Mathematical Model-Based Optimization of CRT Response in Ischemia
基于数学模型的缺血 CRT 反应优化
基本信息
- 批准号:10734486
- 负责人:
- 金额:$ 81.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAcuteAddressAffectAlgorithmsAnimal ModelAnimalsBlood VesselsBundle-Branch BlockCardiacCardiovascular systemChronicCicatrixClinicClinicalComputer ModelsCoronaryCoronary sinus structureCouplingDevelopmentDisadvantagedDiseaseEffectivenessElectrophysiology (science)EpidemicGeometryGoalsGrowthHealth Care CostsHeartHeart DiseasesHeart failureHistologyInfarctionIntraventricularIschemiaKnowledgeLeftLocationLong-Term EffectsMachine LearningMapsMeasuresMechanicsMethodologyModelingMorphologyOutcomePatientsPatternPerfusionPhysicsPhysiologicalPositioning AttributePropertyPurkinje CellsRecommendationReperfusion TherapyRoleSeveritiesSpatial DistributionStructure of purkinje fibersSubendocardial LayerSurfaceSystemTimeTranslatingVentricularWorkcardiac resynchronization therapyclinically relevantcomputational platformcomputer frameworkcoronary perfusioncosthemodynamicsimprovedinnovationmachine learning algorithmmathematical modelmortalitynovelnovel strategiesprematurepreservationresponsesuccesstreatment optimizationtreatment response
项目摘要
PROJECT SUMMARY/ABSTRACT
Application of multiscale computer modeling to help guide and elucidate heart disease treatments is emerging.
Computational modeling, however, has not been exploited for optimizing cardiac resynchronization therapy
(CRT). While CRT has emerged as a powerful treatment for heart failure (HF) to restore normal activation pattern
in the heart, about 30% of patients still do not improve after therapy (non-responders). Improvement of responder
rate therefore remains a crucial clinical challenge and the holy grail of CRT. We believe that computational
modeling can help optimize CRT and improve the responder rate. Equally important, the development of a
multiscale computational framework that considers the key physics of the heart can help understand several
novel pacing therapies (e.g., conduction system pacing (CSP) including HIS bundle pacing and left branch
bundle (LBB) pacing) that have been developed recently to improve the responder rate. Specifically,
computational modeling can help elucidate the key factors affecting the long and short-term effectiveness of
these pacing therapies in patients with different intraventricular conduction delay and/or LV scar/ischemia. Here,
the overall goal here is to develop computational approaches that combine machine learning algorithms and
physics-based modeling to fundamentally understand the short and long-term effects of CRT that includes CSP,
optimize CRT, and to elucidate the advantages and disadvantages of CSP over standard CRT. The following
specific aims are constructed to accomplish this goal. First, we will develop an experimentally-validated
multiscale cardiac electro-mechanics-perfusion (EMP) computational framework to simulate the chronic effects
of CRT and CSP in treating mechanical dyssynchrony in LBBB + ischemia. Second, we will integrate the
computational modeling framework with efficient machine learning and optimization algorithms to optimize CRT
with LV epicardial and endocardial pacing in ischemia. Third, we will use the validated multiscale computational
EMP framework to elucidate the effects and factors affecting the response of CSP in ischemia. The proposed
approach and methodologies are innovative. More importantly, successful completion will directly translate the
findings to the clinic for optimization of CRT therapy to reduce non-responder rates as well as patient
identification for different pacing therapies. This would have substantial impact on improving the treatment and
reducing the cost of HF epidemic.
项目概要/摘要
多尺度计算机模型的应用正在兴起,以帮助指导和阐明心脏病的治疗。
然而,计算模型尚未被用于优化心脏再同步治疗
(显像管)。虽然 CRT 已成为心力衰竭 (HF) 恢复正常激活模式的有效治疗方法
在心脏方面,大约 30% 的患者在治疗后仍然没有改善(无反应者)。响应器的改进
因此,速率仍然是一个关键的临床挑战和 CRT 的圣杯。我们相信计算
建模有助于优化 CRT 并提高响应率。同样重要的是,开发一个
考虑心脏关键物理的多尺度计算框架可以帮助理解几个
新型起搏疗法(例如传导系统起搏 (CSP),包括 HIS 束起搏和左支
最近开发的捆绑(LBB)起搏)可以提高应答率。具体来说,
计算模型可以帮助阐明影响长期和短期有效性的关键因素
这些起搏疗法适用于患有不同心室内传导延迟和/或左心室疤痕/缺血的患者。这里,
这里的总体目标是开发结合机器学习算法和
基于物理的建模,从根本上了解 CRT 的短期和长期影响,包括 CSP、
优化 CRT,并阐明 CSP 相对于标准 CRT 的优缺点。下列
制定具体目标是为了实现这一目标。首先,我们将开发一个经过实验验证的
用于模拟慢性影响的多尺度心脏机电灌注 (EMP) 计算框架
CRT 和 CSP 治疗 LBBB + 缺血机械不同步的效果。其次,我们将整合
具有高效机器学习和优化算法的计算建模框架,可优化 CRT
缺血时左室心外膜和心内膜起搏。第三,我们将使用经过验证的多尺度计算
EMP 框架阐明了缺血中 CSP 反应的影响和因素。拟议的
方法和方法具有创新性。更重要的是,成功完成将直接转化为
临床研究结果用于优化 CRT 治疗,以降低无反应率以及患者
识别不同的起搏治疗。这将对改善治疗和治疗产生重大影响
降低心衰流行的成本。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GHASSAN S KASSAB其他文献
GHASSAN S KASSAB的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GHASSAN S KASSAB', 18)}}的其他基金
Mechanisms of coronary flow heterogeneity: Implications for coronary sinus occlusion therapy
冠状动脉血流异质性的机制:对冠状窦封堵治疗的影响
- 批准号:
10645096 - 财政年份:2022
- 资助金额:
$ 81.2万 - 项目类别:
Roles of Ischemia and mechanical dyssynchrony in optimizing CRT responses
缺血和机械不同步在优化 CRT 反应中的作用
- 批准号:
9914123 - 财政年份:2017
- 资助金额:
$ 81.2万 - 项目类别:
Roles of Ischemia and mechanical dyssynchrony in optimizing CRT responses
缺血和机械不同步在优化 CRT 反应中的作用
- 批准号:
9381294 - 财政年份:2017
- 资助金额:
$ 81.2万 - 项目类别:
Suction Device for Control and Accuracy of Transseptal Access
用于控制和精确进行房间隔进入的抽吸装置
- 批准号:
9346212 - 财政年份:2017
- 资助金额:
$ 81.2万 - 项目类别:
Micro-Mechanical Role of Hypertension in Intimal Hyperplasia
高血压在内膜增生中的微机械作用
- 批准号:
8880455 - 财政年份:2013
- 资助金额:
$ 81.2万 - 项目类别:
Micro-Mechanical Role of Hypertension in Intimal Hyperplasia
高血压在内膜增生中的微机械作用
- 批准号:
8583495 - 财政年份:2013
- 资助金额:
$ 81.2万 - 项目类别:
CT-Based Diagnosis of Diffuse Coronary Artery Disease
基于 CT 的弥漫性冠状动脉疾病诊断
- 批准号:
7902198 - 财政年份:2009
- 资助金额:
$ 81.2万 - 项目类别:
相似国自然基金
巨噬细胞Nogo-B通过FABP4/IL-18/IL-18R调控急性肝衰竭的分子机制研究
- 批准号:82304503
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
α7nAChR激动剂通过PGC-1α和HO-1调控肾小管上皮细胞线粒体的质和量进而改善脓毒症急性肾损伤的机制研究
- 批准号:82372172
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于解郁散热“把好气分关”探讨代谢-炎症“开关”A2BR在急性胰腺炎既病防变中的作用与机制
- 批准号:82374256
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
RacGAP1介导细胞核-线粒体对话在急性肾损伤中促进肾小管上皮细胞能量平衡的作用机制研究
- 批准号:82300771
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
开窍寒温配伍调控应激颗粒铁离子富集水平抗急性缺血性卒中铁死亡损伤的机制研究
- 批准号:82374209
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Mechanical signaling through the nuclear membrane in lung alveolar health
通过核膜的机械信号传导影响肺泡健康
- 批准号:
10677169 - 财政年份:2023
- 资助金额:
$ 81.2万 - 项目类别:
Development of a regional anesthesia guidance system to increase patient access to opioid-sparing analgesia for hip fracture pain
开发区域麻醉引导系统,以增加患者获得髋部骨折疼痛的阿片类药物保留镇痛的机会
- 批准号:
10759550 - 财政年份:2023
- 资助金额:
$ 81.2万 - 项目类别:
A novel bioengineering approach to restoring permanent periodontal inflammatory bone loss
一种恢复永久性牙周炎性骨质流失的新型生物工程方法
- 批准号:
10734465 - 财政年份:2023
- 资助金额:
$ 81.2万 - 项目类别:
Novel Implementation of Microporous Annealed Particle HydroGel for Next-generation Posterior Pharyngeal Wall Augmentation
用于下一代咽后壁增强的微孔退火颗粒水凝胶的新实现
- 批准号:
10727361 - 财政年份:2023
- 资助金额:
$ 81.2万 - 项目类别:
Regulatory Mechanisms Linking Spatial Gene Control and Genome Organization
连接空间基因控制和基因组组织的调控机制
- 批准号:
10712390 - 财政年份:2023
- 资助金额:
$ 81.2万 - 项目类别: