Center for Interventional Oncology

介入肿瘤中心

基本信息

  • 批准号:
    10703106
  • 负责人:
  • 金额:
    $ 125.46万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
  • 资助国家:
    美国
  • 起止时间:
  • 项目状态:
    未结题

项目摘要

The Center for Interventional Oncology (CIO) was established at the NIH Clinical Center (CC) to develop and translate image-guided multi-modality multidisciplinary technologies for localized cancer treatments. The Center is a collaboration involving the CC and the NCI. The Center draws on the strengths of each partner to investigate how imaging technologies and devices can diagnose and treat localized cancers in ways that are precisely targeted and minimally or non-invasive. In doing so, CIO bridges the gap between diagnosis and therapy, and between emerging technologies and procedural medicine. Advanced imaging methods detect cancers earlier when often localized to a single organ or region, such as the liver or prostate. Interventional oncology often provides cancer patients with local or regional treatment options to augment the standard systemic or organ based cancer therapies. CIO investigators leverage the interdisciplinary, translational environment at the CC to investigate and optimize how and when to combine drugs, devices, and multimodal imaging navigation. For example, "activatable" drugs can be injected in a vessel inside a nanoscale or micron-scale vector or bubble, then deployed directly in the tumor with needles, catheters, or ultrasound using "fusion imaging", "augmented reality", or "deep learning", to enable the physician to navigate through the body in a more standardized fashion, with real-time visualization using advanced imaging technologies, such as magnetic resonance imaging (MRI), positron emission tomography (PET), computed tomography (CT), cone beam CT (CBCT), or ultrasound. Pre-procedural images are fused to guide devices delivering targeted therapy to the location of the disease, making the procedure more cost-effective because it doesn't require the imaging system to be physically present to take advantage of the prior imaging information. A prior prostate MRI, for example, can be used to help with guided biopsy or focal ablation in an office setting, by using a "medical GPS"-enabled ultrasound, without requiring, occupying or tying up an MRI system during the procedure. In another example, a thin needle or light, sound, or electrical waves can be used to ablate tumors and enhance targeted drug delivery or immunomodulate by enhanced antigen presentation or downregulation of immunosuppressive elements. Energy sources include high-intensity focused ultrasound, freezing, microwaves, laser, histotripsy, electroporation, and radiofrequency. Researchers also expand investigations into image-guided drug delivery or image-guided "drug painting," where the image can be used to prescribe a particular drug to a specific region, by combining targeted, image-able-able or activate-able drugs with localized energy or heat to deploy the drug within specially engineered micro- or nano-particles. The Center provides a forum to encourage collaborations among researchers and patient-care experts in medical, surgical, urologic, and radiation oncology and interventional radiology / molecular interventions.. The IRP provides an exceptional environment for this type of collaborative translational research. Other major program components include the development of new image-guided biopsy for personalized drug discovery) and first-in-human investigations involving new micro- or nano-scale drugs and carriers, devices, image-guided robotics or augmented reality devices for enhanced automation and standardization of procedures. Targeted sequential biopsy is a powerful tool for drug discover or biomarker characterization across time and space coordinates. Education and cross-training is another important part of the program. Significant gaps exist between the various disciplines, between research efforts and patient care, and between diagnosis and treatment. The gaps may be integrated through advanced image methods for localized therapy. CIO trainees are exposed to a wide variety of disciplinary thought, which underlines the unique translational atmosphere at the NIH, where bench-to-bedside is the rule. Specific aims include: 1. Develop training and educational pathways not otherwise available in Interventional Oncology 2. Develop novel image-guided methods for smart biopsy and biomarker procurement to support targeted therapeutics 3. Support patient care using novel minimally invasive Interventional Oncology techniques, especially in the liver, kidney and prostate 4. Develop novel techniques and technologies in Interventional Oncology. This program uniquely provides an interdisciplinary environment that combines training, patient care, and translational research to accelerate progress in interventional oncology and molecular targeted interventions. The focus is upon translational models, translational tools, and practical deliverables and multidisciplinary paradigms that address unmet clinical needs. Artificial intelligence / deep learning in cancer were begun to define pathways and toolkits to promote integration of digital pathology, with molecular and imaging information for specific cancers and interventions. CIO manages 10 preclinical protocols and 5 clinical protocols. CIO staff were awarded advanced degrees and staff have mentored over 200 trainees (students, residents, fellows, PhD candidates, junior faculty, visiting scientists, engineers, and collaborating scientists). The Woodchuck HCC model was established and characterized for IR and immunomodulatory agents. Different ablation energies were compared in terms of immune effects and immune resistance. Novel software and hardware were developed for patients. Augmented reality for smartphones and goggles was compared to standard guidance systems for IR clinic, and was used for ablation treatment planning. CIO helped define the founding vision of the NCI AI Resource, as a toolkit for deep learning tasks within CCR and the data science ecosystem for cancer. Fusion guided ablation was developed and deployed for the office setting, as was rectum-free prostate biopsy with needle and ultrasound totally outside of the rectum. Smartphone interventions were brought to clinic. CIO accomplished the 1st in human use of artificial intelligence and deep learning for semi-automated segmentation and registration during thermal ablation procedures, Transperineal hand-held ultrasound fusion biopsy without a frame or stepper stage was tested in practice. In the translational animal lab, CIO characterized molecular immune correlates for woodchuck hepatitis-induced HCC, developed a drug delivery model for drug dose painting with fusion and image-able drug eluting beads, developed and deployed immuno-beads that elute immunomodulatory agents (TLR-7 and small molecule checkpoint inhibitors) after local catheter-based delivery into woodchucks with HCC, characterized preclinical augmentation of check point inhibition with cryo in woodchuck liver cancer and cryo and RFA in mouse tumors in vivo, Multiple devices were developed including "Angle-Nav" MEMS clip to needle, Airwaze, BronchoMEMS, OncoNav, PercuNav, UroNav, Airwaze, Lumi and CystoNav. Augmented reality via smartphone was validated. The CIO team also continued to harvest from the multi-national partnerships with 15 publications on COVID-19, the largest public posting of CT scans of COVID-19, and helped translate and commercialize a 3D-printed miniature ventilator and an isolation device for mass casualty and transportation purposes. A deep learning model was trained for detection of Omicron with voice signal alone. A smartphone a *TRUNCATED*
介入肿瘤学中心 (CIO) 成立于 NIH 临床中心 (CC),旨在开发和转化用于局部癌症治疗的图像引导多模态多学科技术。该中心是 CC 和 NCI 的合作项目。该中心利用每个合作伙伴的优势,研究成像技术和设备如何以精确靶向、微创或无创的方式诊断和治疗局部癌症。通过这样做,首席信息官弥合了诊断和治疗之间以及新兴技术和程序医学之间的差距。当癌症通常局限于单个器官或区域(例如肝脏或前列腺)时,先进的成像方法可以更早地发现癌症。 介入肿瘤学通常为癌症患者提供局部或区域治疗选择,以增强标准的全身或基于器官的癌症治疗。 CIO 研究人员利用 CC 的跨学科、转化环境来调查和优化如何以及何时结合药物、设备和多模态成像导航。例如,“可激活”药物可以注射到纳米级或微米级载体或气泡内的血管中,然后使用“融合成像”、“增强现实”或“深度学习”,使医生能够以更标准化的方式在身体中导航,并使用先进的成像技术(例如磁共振成像(MRI)、正电子发射断层扫描(PET)、计算机断层扫描(CT))进行实时可视化,锥形束 CT (CBCT) 或超声波。融合术前图像来引导设备向疾病部位提供靶向治疗,从而使手术更具成本效益,因为它不需要成像系统实际存在来利用先前的成像信息。例如,之前的前列腺 MRI 可用于在办公室环境中通过使用“医用 GPS”超声波来帮助进行引导活检或局部消融,而无需在手术过程中占用或束缚 MRI 系统。在另一个实例中,细针或光、声或电波可用于消融肿瘤并增强靶向药物递送或通过增强抗原呈递或下调免疫抑制元件来进行免疫调节。能源包括高强度聚焦超声、冷冻、微波、激光、组织解剖、电穿孔和射频。研究人员还扩大了对图像引导药物输送或图像引导“药物绘画”的研究,其中图像可用于通过将有针对性的、可成像或可激活的药物与特定药物相结合来向特定区域开出特定药物。局部能量或热量将药物部署在专门设计的微米或纳米颗粒中。该中心提供了一个论坛,鼓励内科、外科、泌尿外科、放射肿瘤学以及介入放射学/分子干预领域的研究人员和患者护理专家之间的合作。IRP 为此类合作转化研究提供了一个特殊的环境。其他主要项目组成部分包括开发用于个性化药物发现的新型图像引导活检以及涉及新型微米或纳米级药物和载体、设备、图像引导机器人或用于增强自动化的增强现实设备的首次人体研究和程序标准化。靶向序贯活检是跨越时间和空间坐标的药物发现或生物标志物表征的强大工具。教育和交叉培训是该计划的另一个重要组成部分。不同学科之间、研究工作和患者护理之间以及诊断和治疗之间存在着巨大差距。这些间隙可以通过先进的图像方法进行整合以进行局部治疗。 CIO 学员接触到各种各样的学科思想,这凸显了 NIH 独特的翻译氛围,从工作台到床边都是规则。具体目标包括: 1. 开发介入肿瘤学中没有的培训和教育途径 2. 开发用于智能活检和生物标志物采购的新型图像引导方法,以支持靶向治疗 3. 使用新型微创介入肿瘤学技术支持患者护理,特别是在肝脏、肾脏和前列腺 4. 开发介入肿瘤学新技术。该项目独特地提供了一个结合培训、患者护理和转化研究的跨学科环境,以加速介入肿瘤学和分子靶向干预的进展。重点是转化模型、转化工具以及解决未满足的临床需求的实用可交付成果和多学科范式。癌症领域的人工智能/深度学习开始定义途径和工具包,以促进数字病理学与特定癌症和干预措施的分子和成像信息的整合。 CIO 管理 10 个临床前方案和 5 个临床方案。 CIO 员工获得了高级学位,员工指导了 200 多名学员(学生、住院医师、研究员、博士生、初级教师、访问科学家、工程师和合作科学家)。建立了土拨鼠 HCC 模型并针对 IR 和免疫调节剂进行了表征。比较不同消融能量的免疫效果和免疫抵抗力。为患者开发了新颖的软件和硬件。将智能手机和护目镜的增强现实与 IR 诊所的标准指导系统进行比较,并用于消融治疗计划。 CIO 帮助定义了 NCI AI Resource 的创始愿景,将其作为 CCR 和癌症数据科学生态系统中深度学习任务的工具包。融合引导消融术是为办公室环境开发和部署的,还有完全在直肠外进行针和超声的直肠前列腺活检。智能手机干预被带到诊所。 CIO 实现了人类在热消融过程中使用人工智能和深度学习进行半自动分割和配准的第一,在实践中测试了没有框架或步进台的经会阴手持式超声融合活检。在转化动物实验室中,CIO 表征了土拨鼠肝炎诱发的 HCC 的分子免疫相关性,开发了一种药物递送模型,用于使用融合和可成像药物洗脱珠进行药物剂量绘制,开发并部署了可洗脱免疫调节剂 (TLR- 7 和小分子检查点抑制剂)在局部导管递送至患有 HCC 的土拨鼠体内后​​,在土拨鼠肝癌中采用冷冻增强检查点抑制作用,在土拨鼠肝癌中采用冷冻和 RFA 增强检查点抑制作用。小鼠体内肿瘤,开发了多种设备,包括“Angle-Nav”MEMS夹针、Airwaze、BronchoMEMS、OncoNav、PercuNav、UroNav、Airwaze、Lumi和CystoNav。通过智能手机的增强现实得到了验证。 CIO 团队还继续从与 15 种有关 COVID-19 的出版物的跨国合作中获益,这是最大的公开发布的 COVID-19 CT 扫描图像,并帮助翻译和商业化了 3D 打印的微型呼吸机和大规模隔离装置。伤亡和运输目的。训练深度学习模型仅使用语音信号即可检测 Omicron。智能手机*截断*

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bradford J Wood其他文献

A pilot study of the PD-1 targeting agent AMP-224 combined with low-dose cyclophosphamide and stereotactic body radiation therapy in patients with metastatic colorectal cancer
PD-1靶向剂AMP-224联合小剂量环磷酰胺和立体定向体部放射治疗转移性结直肠癌的初步研究
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Floudas;Gagandeep Brar;Donna Mabry;A. Duffy;Bradford J Wood;Elliot Levy;V. Krishnasamy;S. Fioravanti;M. Cecilia;Bonilla;M. Walker;Maria Pia Morelli;D. E. Kleiner;S. M. Steinberg;William;D. Figg;T. F. Greten;Changqing Xie
  • 通讯作者:
    Changqing Xie

Bradford J Wood的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bradford J Wood', 18)}}的其他基金

Center for Interventional Oncology
介入肿瘤中心
  • 批准号:
    7970214
  • 财政年份:
  • 资助金额:
    $ 125.46万
  • 项目类别:
Center for Interventional Oncology
介入肿瘤中心
  • 批准号:
    8350193
  • 财政年份:
  • 资助金额:
    $ 125.46万
  • 项目类别:
Development of COVID-19 and Cancer Tools with Artificial Intelligence
利用人工智能开发 COVID-19 和癌症工具
  • 批准号:
    10926404
  • 财政年份:
  • 资助金额:
    $ 125.46万
  • 项目类别:
Center for Interventional Oncology
介入肿瘤中心
  • 批准号:
    8554178
  • 财政年份:
  • 资助金额:
    $ 125.46万
  • 项目类别:
Development of COVID-19 Imaging Tools with Artificial Intelligence
利用人工智能开发 COVID-19 成像工具
  • 批准号:
    10487067
  • 财政年份:
  • 资助金额:
    $ 125.46万
  • 项目类别:
Center for Interventional Oncology
介入肿瘤中心
  • 批准号:
    10926682
  • 财政年份:
  • 资助金额:
    $ 125.46万
  • 项目类别:
Development of COVID-19 and Cancer Tools with Artificial Intelligence
利用人工智能开发 COVID-19 和癌症工具
  • 批准号:
    10702757
  • 财政年份:
  • 资助金额:
    $ 125.46万
  • 项目类别:
Center for Interventional Oncology
介入肿瘤中心
  • 批准号:
    10262800
  • 财政年份:
  • 资助金额:
    $ 125.46万
  • 项目类别:
Center for Interventional Oncology
介入肿瘤中心
  • 批准号:
    8763809
  • 财政年份:
  • 资助金额:
    $ 125.46万
  • 项目类别:
Development of COVID-19 Imaging Tools with Artificial Intelligence
利用人工智能开发 COVID-19 成像工具
  • 批准号:
    10262554
  • 财政年份:
  • 资助金额:
    $ 125.46万
  • 项目类别:

相似国自然基金

高面能量密度全3D打印微型锌离子混合电容器的构筑与储能机理研究
  • 批准号:
    22309176
  • 批准年份:
    2023
  • 资助金额:
    10 万元
  • 项目类别:
    青年科学基金项目
自由曲面空间网格结构3D打印节点力学性能与智能优化研究
  • 批准号:
    52378167
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
分层悬浮3D打印工程化类弹性蛋白用于组织工程肺脏的构建研究
  • 批准号:
    32301209
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
3D打印-前端聚合反应耦合新方法构筑凝胶支架材料及其应用基础研究
  • 批准号:
    22378202
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
3D打印支架联合纳米药物复合糖肽水凝胶治疗关节炎
  • 批准号:
    82302702
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Multi-tissue type condensations for trachea tissue regeneration via individual cell bioprinting
通过单细胞生物打印进行气管组织再生的多组织类型浓缩
  • 批准号:
    10643041
  • 财政年份:
    2023
  • 资助金额:
    $ 125.46万
  • 项目类别:
Development of a 3D neurovascular unit for in vitro modeling of subarachnoid hemorrhage and screening therapies
开发用于蛛网膜下腔出血体外建模和筛选治疗的 3D 神经血管单元
  • 批准号:
    10722387
  • 财政年份:
    2023
  • 资助金额:
    $ 125.46万
  • 项目类别:
Design of the Glomerulus and bOwman cApsuLe on a chip (GOAL)
芯片上肾小球和鲍曼胶囊的设计(目标)
  • 批准号:
    10810038
  • 财政年份:
    2023
  • 资助金额:
    $ 125.46万
  • 项目类别:
Smart Needle with Intelligent Robotic Control for Prostate Brachytherapy
用于前列腺近距离治疗的智能机器人控制智能针
  • 批准号:
    10460613
  • 财政年份:
    2021
  • 资助金额:
    $ 125.46万
  • 项目类别:
Magnetic Bronchoscope for Improved Pulmonary Access
用于改善肺部通路的磁力支气管镜
  • 批准号:
    10152980
  • 财政年份:
    2021
  • 资助金额:
    $ 125.46万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了