Maximizing flexibility: Optimized neural probes and electronics for long term, high bandwidth recordings
最大限度地提高灵活性:优化的神经探针和电子设备可实现长期、高带宽记录
基本信息
- 批准号:10687537
- 负责人:
- 金额:$ 7.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAnatomyAnimal ModelAnimalsAreaBehaviorBrainBrain regionCallithrixCharacteristicsChronicCicatrixCognitionCollectionCommunitiesComplexComputer softwareDevelopmentDevicesDimensionsDiseaseElectrodesElectronicsElectrophysiology (science)FeedbackHeterogeneityHourImageImaging TechniquesImplantIndividualLaboratoriesLongevityMacaca mulattaMeasurementMissionModalityModelingMusNerve DegenerationNeurologicNeuronsNeurosciencesOperative Surgical ProceduresOptical MethodsOpticsPatternPerceptionPerformancePolymersPopulationPublic HealthRattusResearchResearch PersonnelResolutionSiteSpicesStructureSystemTechniquesTechnologyTestingThickTimeTissuesUnited States National Institutes of HealthUtahWorkbiomaterial compatibilitycell typedensitydesigndisorder preventionexperienceflexibilityimaging modalityimplantationimprovedin vivoin vivo evaluationinformation processinginnovationinstrumentationlithographymillisecondminimally invasivenanoelectronicsneural circuitneuromechanismnew technologyoptical imagingrelating to nervous systemscale upsuccesstemporal measurementtooluser-friendly
项目摘要
The brain is a massively interconnected network of specialized circuits. Three characteristics of these circuits
make them particularly challenging: diversity of time scales, diversity of spatial scales, and heterogeneity.
Understanding the brain therefore requires spanning these temporal and spatial scales and providing information
about cell-types. We need to be able to record the activity of individual neurons across time to understand activity
patterns on a millisecond timescale and how those patterns evolve with experience across hours, days, months
and even years. We need to be able to record throughout a cortical region, spanning both different parts of the
region as well as all layers, to understand both local and distributed information processing. We also need to be
able to combine these dense and distributed recordings with imaging to take advantage of the complementary
strengths of electrical and optical measurements. This is hindered by multiple challenges: 1) Current approaches
lack the spatial extent (spanning multiple structures) required to examine three-dimensional or distributed
networks in detail. 2) Current electrophysiological approaches (which do provide the millisecond resolution)
typically lack the necessary lifetime to follow long-term dynamics. 3) Current electrophysiological approaches
use rigid electrodes that are ill-suited to use with imaging techniques. The overall objective of this project is to
optimize a suite of complementary technologies that can address these challenges for the community and make
them ready for common use by the neuroscience community. Our central hypothesis is that our recently
developed nanoelectronic thread (NET) devices, which have demonstrated biocompatibility, in vivo function
longevity, high quality unit recording and compatibility with optical methods, are a potentially ideal candidate for
understanding patterns of brain activity. We plan to develop a selection of NET probes and high-density arrays
that are suitable for multiple brain regions in different spices. We will engage expert neuroscientists, allowing us
to develop and optimize NETs that work across mouse, rat and marmoset, and to expedite the delivery of
resulting technologies to the scientific community. We will pursue the following three specific aims: 1) To optimize
NET probes for various brain regions and species.; 2) To optimize NET probes for high-density regional and
distributed recordings; and 3) To determine the best devices for each species and brain regions. The approach
is innovative, because the technology we will develop and put into common use has the potential to drive
innovation throughout the field, enabling new, very high density recording studies and allowing investigators to
track large ensembles of neurons in unprecedented details and time duration.
大脑是一个大规模相互联系的专业电路网络。这些电路的三个特征
使它们特别具有挑战性:时间尺度的多样性,空间尺度的多样性和异质性。
因此,了解大脑需要跨越这些时间和空间尺度并提供信息
关于细胞类型。我们需要能够在时间上记录单个神经元的活动以了解活动
毫秒时间尺度上的模式以及这些模式如何随着时间,几天,几个月的经验而发展
甚至几年。我们需要能够在整个皮质区域进行记录,跨越该区域的两个不同部分
区域以及所有层,都可以了解本地和分布式信息处理。我们还需要
能够将这些致密和分布式记录与成像结合起来,以利用互补
电和光学测量的强度。这受到多个挑战的阻碍:1)当前的方法
缺乏检查三维或分布所需的空间范围(跨越多个结构)
网络详细。 2)当前的电生理方法(确实提供了毫秒的分辨率)
通常缺乏遵循长期动态的必要寿命。 3)当前的电生理方法
使用不适合与成像技术一起使用的刚性电极。该项目的总体目标是
优化一套可以满足社区挑战并制造这些挑战的补充技术
他们准备好用于神经科学社区的共同用途。我们的中心假设是我们最近
开发的纳米电源线(NET)设备,具有生物相容性,体内功能
寿命,高质量单位记录以及与光学方法的兼容性,是潜在的理想候选人
了解大脑活动的模式。我们计划开发一系列净探针和高密度阵列
适用于不同香料中的多个大脑区域。我们将吸引专家神经科学家,允许我们
开发和优化跨鼠标,老鼠和果泥的网络,并加快交付
导致科学界的技术。我们将追求以下三个具体目标:1)优化
各种大脑区域和物种的净探针。 2)优化高密度区域和
分布式记录; 3)确定每个物种和大脑区域的最佳设备。方法
具有创新性,因为我们将开发和投入共同使用的技术有可能驱动
整个领域的创新,实现了新的,非常高的密度记录研究,并允许研究人员
在前所未有的细节和时间持续时间中跟踪神经元的大合奏。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Loren M Frank其他文献
Loren M Frank的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Loren M Frank', 18)}}的其他基金
Commercialization of integrated electrode-electronics system for large scale, long-lasting electrophysiology
用于大规模、持久电生理学的集成电极电子系统的商业化
- 批准号:
10651898 - 财政年份:2022
- 资助金额:
$ 7.06万 - 项目类别:
Commercialization of integrated electrode-electronics system for large scale, long-lasting electrophysiology
用于大规模、持久电生理学的集成电极电子系统的商业化
- 批准号:
10481712 - 财政年份:2022
- 资助金额:
$ 7.06万 - 项目类别:
Diversity Administrative Supplement to Maximizing Flexibility: Optimized Neural Probes and Electronics for Long Term, High Bandwidth Recordings
最大限度地提高灵活性的多样性管理补充:优化的神经探针和电子设备,用于长期、高带宽记录
- 批准号:
10307662 - 财政年份:2021
- 资助金额:
$ 7.06万 - 项目类别:
Maximizing flexibility: Optimized neural probes and electronics for long term, high bandwidth recordings
最大限度地提高灵活性:优化的神经探针和电子设备可实现长期、高带宽记录
- 批准号:
10689321 - 财政年份:2020
- 资助金额:
$ 7.06万 - 项目类别:
Maximizing flexibility: Optimized neural probes and electronics for long term, high bandwidth recordings
最大限度地提高灵活性:优化的神经探针和电子设备可实现长期、高带宽记录
- 批准号:
10472268 - 财政年份:2020
- 资助金额:
$ 7.06万 - 项目类别:
Maximizing flexibility: Optimized neural probes and electronics for long term, high bandwidth recordings
最大限度地提高灵活性:优化的神经探针和电子设备可实现长期、高带宽记录
- 批准号:
10893840 - 财政年份:2020
- 资助金额:
$ 7.06万 - 项目类别:
Maximizing flexibility: Optimized neural probes and electronics for long term, high bandwidth recordings
最大限度地提高灵活性:优化的神经探针和电子设备可实现长期、高带宽记录
- 批准号:
10893838 - 财政年份:2020
- 资助金额:
$ 7.06万 - 项目类别:
Maximizing flexibility: Optimized neural probes and electronics for long term, high bandwidth recordings
最大限度地提高灵活性:优化的神经探针和电子设备可实现长期、高带宽记录
- 批准号:
10241922 - 财政年份:2020
- 资助金额:
$ 7.06万 - 项目类别:
Maximizing flexibility: Optimized neural probes and electronics for long term, high bandwidth recordings
最大限度地提高灵活性:优化的神经探针和电子设备可实现长期、高带宽记录
- 批准号:
10473539 - 财政年份:2020
- 资助金额:
$ 7.06万 - 项目类别:
Maximizing flexibility: Optimized neural probes and electronics for long term, high bandwidth recordings
最大限度地提高灵活性:优化的神经探针和电子设备可实现长期、高带宽记录
- 批准号:
9925027 - 财政年份:2020
- 资助金额:
$ 7.06万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 7.06万 - 项目类别:
Project 2: Ex Vivo Modeling and Analysis of Gastric Precancerous Lesions
项目2:胃癌前病变的离体建模与分析
- 批准号:
10715763 - 财政年份:2023
- 资助金额:
$ 7.06万 - 项目类别:
Morphologic and Kinematic Adaptations of the Subtalar Joint after Ankle Fusion Surgery in Patients with Varus-type Ankle Osteoarthritis
内翻型踝骨关节炎患者踝关节融合手术后距下关节的形态和运动学适应
- 批准号:
10725811 - 财政年份:2023
- 资助金额:
$ 7.06万 - 项目类别:
Computer-Aided Triage of Body CT Scans with Deep Learning
利用深度学习对身体 CT 扫描进行计算机辅助分类
- 批准号:
10585553 - 财政年份:2023
- 资助金额:
$ 7.06万 - 项目类别:
In vivo Perturb-map: scalable genetic screens with single-cell and spatial resolution in intact tissues
体内扰动图:在完整组织中具有单细胞和空间分辨率的可扩展遗传筛选
- 批准号:
10578616 - 财政年份:2023
- 资助金额:
$ 7.06万 - 项目类别: