Computer Aided Detection for Radiologic Images
放射图像的计算机辅助检测
基本信息
- 批准号:10683666
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:AbdomenArterial Fatty StreakArtificial IntelligenceBig DataBody CompositionCancer PatientComputer AssistedComputer-Assisted DiagnosisComputersControl GroupsDataDetectionDiagnosisDiagnosticDiagnostic ErrorsDiseaseHealthImageKidneyLeadLesionLiverLymphMRI ScansMachine LearningMagnetic Resonance ImagingMalignant neoplasm of prostateMeasurementMedical ImagingMethodsMuscleNetwork-basedOrganPancreasPatientsPerformancePhysiciansRoentgen RaysScientific Advances and AccomplishmentsSmall IntestinesSpleenTechniquesTrainingUnited States National Institutes of HealthVariantX-Ray Computed Tomographyabdominal CTcomputer aided detectionconvolutional neural networkdeep learningdiagnostic accuracyimprovedradiological imagingradiologistskills trainingtheories
项目摘要
The purpose of this project is to develop computer-aided diagnosis/detection (CAD) for a wide variety of radiologic images and disease types. This project uses existing NIH radiology images.
We are developing techniques for segmentation of abdominal CT images to accurately locate the boundaries of the major abdominal organs such as the liver, spleen, kidneys, muscles and pancreas. We made further progress on this project, providing accurate localization and measurement of diseases such as abdominal atherosclerotic plaques. We made further progress on a project to develop computer-aided assessment of body composition on CT scans.
We are developing convolutional neural networks based methods ("deep learning") on big data to train computers to detect diseases on radiology images like X-Ray, CT and MRI scans.
In FY 2022, we made several scientific advances. These included (1) improved universal lesion detection on CT potentially improving diagnosis for a wide range of diseases, (2) showing that abdominal aortic and iliac atherosclerotic plaque burden in prostate cancer patients did not differ from a control group disproving a theory about an association, (3) improved automated abnormal lymph detection on abdominal MRI, and (4) improved methods to segment and track the small intestine on abdominal CT scans.
该项目的目的是开发用于各种放射学图像和疾病类型的计算机辅助诊断/检测(CAD)。该项目使用现有的NIH放射学图像。
我们正在开发用于分割腹部CT图像的技术,以准确定位主要腹部器官的边界,例如肝脏,脾脏,肾脏,肌肉和胰腺。我们在该项目上取得了进一步的进展,提供了诸如腹部动脉粥样硬化斑块等疾病的准确定位和测量。我们在一个项目上开发了对CT扫描中身体组成的计算机辅助评估的项目进一步进展。
我们正在针对大数据开发基于卷积神经网络的方法(“深度学习”),以训练计算机以检测X射线,CT和MRI扫描等放射学图像的疾病。
在2022财年,我们取得了一些科学进步。 These included (1) improved universal lesion detection on CT potentially improving diagnosis for a wide range of diseases, (2) showing that abdominal aortic and iliac atherosclerotic plaque burden in prostate cancer patients did not differ from a control group disproving a theory about an association, (3) improved automated abnormal lymph detection on abdominal MRI, and (4) improved methods to segment and track the small腹部CT扫描上的肠。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ronald M. Summers其他文献
Automated Classification of Body MRI Sequence Type Using Convolutional Neural Networks
使用卷积神经网络对身体 MRI 序列类型进行自动分类
- DOI:
10.48550/arxiv.2402.08098 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Kimberly Helm;T. Mathai;Boah Kim;Pritam Mukherjee;Jianfei Liu;Ronald M. Summers - 通讯作者:
Ronald M. Summers
13N-ammonia myocardial blood flow and uptake: relation to functional outcome of asynergic regions after revascularization.
13N-氨心肌血流量和摄取:与血运重建后不协同区域的功能结果相关。
- DOI:
10.1016/s0735-1097(98)00630-5 - 发表时间:
1999 - 期刊:
- 影响因子:24
- 作者:
Anastasia N. Kitsiou;S. Bacharach;Marissa L. Bartlett;G. Srinivasan;Ronald M. Summers;A. Quyyumi;V. Dilsizian - 通讯作者:
V. Dilsizian
Automated Measurement of Pericoronary Adipose Tissue Attenuation and Volume in CT Angiography
CT 血管造影中冠状动脉周围脂肪组织衰减和体积的自动测量
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Andrew M. Nguyen;T. Mathai;Liangchen Liu;Jianfei Liu;Ronald M. Summers - 通讯作者:
Ronald M. Summers
Automated Plaque Detection and Agatston Score Estimation on Non-Contrast CT Scans: A Multicenter Study
非造影 CT 扫描的自动斑块检测和 Agatston 评分估计:一项多中心研究
- DOI:
10.1117/12.3008750 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Andrew M. Nguyen;Jianfei Liu;T. Mathai;Peter C. Grayson;Ronald M. Summers - 通讯作者:
Ronald M. Summers
Quantitative assessment of colon distention for polyp detection in CT virtual colonoscopy
CT虚拟结肠镜检查中结肠扩张对息肉检测的定量评估
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
R. V. Van Uitert;Ingmar Bitter;Ronald M. Summers;J. R. Choi;P. Pickhardt - 通讯作者:
P. Pickhardt
Ronald M. Summers的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ronald M. Summers', 18)}}的其他基金
Morphologic Characterization of Carotid Artery Plaque Using Virtual Angioscopy
使用虚拟血管镜检查颈动脉斑块的形态特征
- 批准号:
6431759 - 财政年份:
- 资助金额:
-- - 项目类别:
相似海外基金
Pericoronary fat: MACE risk from non-contrast CT and the role of iodine perfusion in contrast CT
冠状动脉周围脂肪:非造影 CT 的 MACE 风险以及造影 CT 中碘灌注的作用
- 批准号:
10577558 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Automated Intracranial Vessel Wall Analysis Pipeline for Multi-contrast Multi-platform Applications
用于多对比多平台应用的自动化颅内血管壁分析管道
- 批准号:
10451951 - 财政年份:2022
- 资助金额:
-- - 项目类别:
A dual-layer flat panel x-ray detector based on an engineered amorphous chalcogenide alloy for quantifying coronary artery calcium
基于工程非晶硫属化物合金的双层平板 X 射线探测器,用于量化冠状动脉钙
- 批准号:
10698174 - 财政年份:2022
- 资助金额:
-- - 项目类别:
A dual-layer flat panel x-ray detector based on an engineered amorphous chalcogenide alloy for quantifying coronary artery calcium
基于工程非晶硫属化物合金的双层平板 X 射线探测器,用于量化冠状动脉钙
- 批准号:
10504769 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Automated Intracranial Vessel Wall Analysis Pipeline for Multi-contrast Multi-platform Applications
用于多对比多平台应用的自动化颅内血管壁分析管道
- 批准号:
10686020 - 财政年份:2022
- 资助金额:
-- - 项目类别: