Integrative Multiomics to Uncover Novel Genes and Networks in Pulmonary Arterial Hypertension
综合多组学揭示肺动脉高压的新基因和网络
基本信息
- 批准号:10723950
- 负责人:
- 金额:$ 17.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-10 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:BiologyBlood VesselsCandidate Disease GeneCardiac Catheterization ProceduresCellsComputer AnalysisComputing MethodologiesCritical CareDataDiseaseEndotheliumFoundationsFutureGenesGenetic RiskGenetic TranscriptionGlycoproteinsGoalsHealthHistologicHumanIn SituIn VitroIntegrinsInvestigationKnowledgeLungMalignant NeoplasmsMeasuresMentorsMesenchymalMolecularMolecular ProfilingPathogenesisPathogenicityPathway AnalysisPathway interactionsPatientsPhenotypeProcessPrognosisPulmonary arterial remodelingQuality of lifeResearchResolutionRoleSamplingSeveritiesSmall Interfering RNASystemTestingVascular remodelingWNT Signaling Pathwaybiobankcandidate identificationcareercell typecohorteffective therapygenome wide association studyhemodynamicsinsightknock-downmedical schoolsmultimodalitymultiple omicsnew therapeutic targetnovelphysician-scientist training programpulmonary arterial hypertensionpulmonary vascular cellspulmonary vascular remodelingsingle nucleus RNA-sequencingskillstargeted treatmenttherapeutic targettranscriptome sequencingtranscriptomicstranslational study
项目摘要
Project Summary/Abstract
This proposal describes a mentored physician-scientist training program to uncover novel genes and networks
in pulmonary arterial hypertension (PAH) using an integrative multiomics approach. The candidate is currently
developing his academic career in the Division of Pulmonary & Critical Care at the David Geffen School of
Medicine of UCLA. His long-term goal is to develop more effective targeted therapies for PAH patients informed
by a deeper knowledge of the pathogenic mechanisms. Under the guidance of his mentors Drs. Mansoureh
Eghbali and Xia Yang, the candidate will develop a unique cross-disciplinary skillset in integrative systems,
single-cell, spatial and experimental biology that will facilitate his transition to research independence in the field
of PAH.
PAH remains an incurable disease characterized by irreversible pulmonary vascular remodeling, poor quality of
life, and guarded long-term prognosis. Leveraging a well-powered cohort integrating the latest omics and
computational methodologies is critically needed to identify candidate molecular drivers in PAH lungs as potential
therapeutic targets. With access to RNA sequencing of the largest biobank of human PAH and control lungs to
date (n=148), we have identified, by co-expression network analysis, a module of 266 genes (which we refer to
as the “pink” module) that is strongly associated with PAH lungs. Through multimodal integration with right heart
catheterization data, histological analyses, and genome-wide association studies (GWAS), we found the pink
module is not only transcriptionally upregulated in PAH lungs, but also associated with increased hemodynamic
severity, vascular remodeling, and genetic risk of PAH. Our preliminary data suggests pink module genes are 1)
dysregulated in pulmonary vascular cells, 2) enriched in pathways relevant to pulmonary vascular remodeling
such as endothelial-mesenchymal transition and Wnt signaling, 3) and may be candidate molecular drivers of
PAH, such as ANTXR1, an integrin-like glycoprotein strongly implicated in various cancers but never studied in
PAH. Given the mounting preliminary evidence for the importance of the bulk lung-derived pink module, a deeper
investigation into its cell-specific role in PAH pathogenesis is needed to advance our understanding of the
molecular drivers of PAH lungs and identify new therapeutic targets. We hypothesize that the pink module drives
vascular remodeling in PAH through its dysregulation within pulmonary vascular cells. To test this hypothesis,
we will 1) resolve the specific cellular context in which the pink module is dysregulated in PAH lungs using single-
nucleus RNAseq and spatial transcriptomics and 2) determine the effects of in vitro knockdown of a pink module
candidate driver gene, such as ANTXR1, in PAH pulmonary vascular cells. The proposed studies will utilize a
combination of cutting-edge multiomic approaches and experimental biology to provide greater insight into a
novel PAH-associated gene set derived from a large lung biobank, and will provide a foundation for my own lab
and future R01 that will focus on basic mechanistic and translational studies.
项目概要/摘要
该提案描述了一个受指导的医师科学家培训计划,以发现新的基因和网络
该候选人目前正在使用综合多组学方法治疗肺动脉高压(PAH)。
在大卫格芬医学院肺科和重症监护科发展他的学术生涯
他的长期目标是为 PAH 患者开发更有效的靶向疗法。
在他的导师 Mansoureh 博士的指导下,对致病机制有了更深入的了解。
候选人 Eghbali 和 Xia Yang 将在综合系统中培养独特的跨学科技能,
单细胞、空间和实验生物学将有助于他过渡到该领域的独立研究
多环芳烃。
PAH 仍然是一种无法治愈的疾病,其特征是不可逆的肺血管重塑、肺质量差
生命,并利用强大的队列整合最新的组学和长期预后。
迫切需要计算方法来确定 PAH 肺部潜在的候选分子驱动因素
获得最大的人类 PAH 生物库和对照肺部的 RNA 测序
日期(n = 148),我们通过共表达网络分析确定了一个包含 266 个基因的模块(我们将其称为
作为“粉红色”模块),通过与右心的多模式整合与 PAH 肺部密切相关。
通过导管插入数据、组织学分析和全基因组关联研究 (GWAS),我们发现粉红色
该模块不仅在 PAH 肺中转录上调,而且与血流动力学增加相关
我们的初步数据表明粉红色模块基因是 1)
肺血管细胞失调,2) 富含与肺血管重塑相关的通路
例如内皮-间质转化和 Wnt 信号传导,3) 并且可能是候选分子驱动因素
PAH,例如 ANTXR1,一种与多种癌症密切相关的整合素样糖蛋白,但从未在
鉴于越来越多的初步证据表明肺源性粉红色模块的重要性,需要进行更深入的研究。
需要研究其在 PAH 发病机制中的细胞特异性作用,以增进我们对 PAH 发病机制的理解。
PAH 肺部的分子驱动因素并确定新的治疗靶标。
PAH 中的血管重塑是通过肺血管细胞内的失调来进行的。
我们将1)解决PAH肺中粉红色模块失调的特定细胞环境,使用单
核 RNAseq 和空间转录组学以及 2) 确定粉红色模块体外敲低的效果
拟议的研究将利用 PAH 肺血管细胞中的候选驱动基因,例如 ANTXR1。
尖端多组学方法和实验生物学的结合,可以更深入地了解
来自大型肺部生物库的新型 PAH 相关基因组,将为我自己的实验室提供基础
未来的 R01 将专注于基础机械和转化研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jason Hong其他文献
Jason Hong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
异常激活的小胶质细胞通过上调CTSS抑制微血管特异性因子MFSD2A表达促进1型糖尿病视网膜病变的免疫学机制研究
- 批准号:82370827
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
脑血管周细胞p38α-MAPK在阿尔茨海默病发病中的作用和治疗靶点研究
- 批准号:82371417
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
谷丙转氨酶GPT2通过组蛋白修饰促进培唑帕尼耐药的肾透明细胞癌血管拟态形成的机制研究
- 批准号:82303233
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
BACE1调控铁死亡参与早发型痴呆(EOAD)微血管异常的机制研究
- 批准号:82371210
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
多尺度仿生聚醚酮酮修复体时空调控多细胞交互作用诱导承力部位血管化骨再生的作用机制研究
- 批准号:32371396
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Therapeutic Targeting of WDR5 in the Glioblastoma Perivascular Niche
WDR5 在胶质母细胞瘤血管周围微环境中的治疗靶向
- 批准号:
10581400 - 财政年份:2023
- 资助金额:
$ 17.66万 - 项目类别:
High-throughput nanoIEA-based Assay for Screening Immune Cell-Vascular Interactions
用于筛选免疫细胞-血管相互作用的基于 nanoIEA 的高通量测定法
- 批准号:
10592897 - 财政年份:2023
- 资助金额:
$ 17.66万 - 项目类别:
Elucidating anti-angiogenic tyrosine kinase inhibitor-induced vascular dysfunction
阐明抗血管生成酪氨酸激酶抑制剂诱导的血管功能障碍
- 批准号:
10570393 - 财政年份:2023
- 资助金额:
$ 17.66万 - 项目类别:
Role of Kidney Microvasculature-Secreted Factors in Neuropilin Signaling in Proximal Tubule During Diabetic Kidney Disease
糖尿病肾病期间肾脏微血管分泌因子在近曲小管神经毡蛋白信号传导中的作用
- 批准号:
10648746 - 财政年份:2023
- 资助金额:
$ 17.66万 - 项目类别: