Homogenized, engineered extracellular vesicles for intracranial targeting
用于颅内靶向的均质化、工程化细胞外囊泡
基本信息
- 批准号:10659682
- 负责人:
- 金额:$ 53.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-04 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAstrocytesBehaviorBiochemicalBiodistributionBiologicalBiological AssayBiological AvailabilityBiological ProcessBioreactorsBlood - brain barrier anatomyBrainBreast Cancer CellCancer cell lineCell LineCellsChemicalsClinicalComplexDiseaseDisseminated Malignant NeoplasmDoseDrug Delivery SystemsDrug TargetingEndotheliumEngineeringExhibitsFDA approvedFailureFeedbackFormulationFoundationsGlioblastomaGoalsGood Manufacturing ProcessHalf-LifeHeterogeneityHybridsImageImmuneLabelLibrariesLigandsLiposomesMalignant NeoplasmsMalignant neoplasm of brainMeasuresMechanicsMediatingMedicineMethodsMicrofluidicsModelingMolecularMusNeurodegenerative DisordersNeurogliaNeuronsPathway interactionsPatientsPenetrationPerformancePharmaceutical PreparationsPhase I Clinical TrialsPopulationPropertyProteinsRNAReportingResearchSafetyShapesSolidSourceSterilityStructureSystemTechniquesTestingTherapeuticTissuesToxic effectTranslatingTreatment EfficacyTropismVisionWorkbiomaterial compatibilityblood-brain barrier crossingcell typeclinical practicecombatcontrolled releasedelivery vehicledesigndrug release profileefficacy studyexpectationextracellular vesiclesfunctional improvementimmune clearancein vivoinnovationinterestloss of functionmimeticsmouse modelnanoarchitecturenanocarriernanomaterialsnanoparticlenanoscalenervous system disorderneuralnext generationnovelnovel strategiesparticlepersonalized carepharmacokinetics and pharmacodynamicsreceptorsafety studysafety testingsuccesssynthetic drugtemozolomidetooltranscytosistumoruptake
项目摘要
PROJECT SUMMARY/ABSTRACT
The objective of the proposed research is to engineer a targeted biological nanoparticle platform with high
intracranial delivery and glial cell targeting for broad applicability in drug delivery and imaging. A great deal of
work has already been accomplished elucidating the ability of certain extracellular vesicles (EVs) to cross
endothelial barriers, especially the blood-brain barrier (BBB). Other work has established that EVs exhibit
excellent tropism towards particular tissues and cell types. The focus of this proposal is to understand the
mechanisms by which certain EV subpopulations accomplish these feats, and to engineer them into a hybrid
liposome-EV drug delivery platform. Given the plethora of recent research into EV structure and function, it is
well known that they exhibit considerable compositional heterogeneity. But fundamental questions still exist as
to how EV prescribed functions differ across these subpopulations. It is likely that off-target effects and
inefficiencies in capturing native EV functions with engineered mimetics are due to their substantial
heterogeneity. Our first hypothesis is that homogenization of EVs towards a narrow size range with uniform
biomolecular content will result in a more potent and controllable drug delivery platform that maintains native EV
function yet reduces off-target toxicity. Our second hypothesis is that fusion of homogenized EVs and
liposomes with various functions (i.e., efficient BBB permeation through receptor mediated transcytosis) will
deliver an engineered product combining desired functions. We plan on addressing these hypotheses through
rigorous engineering to homogenize EVs (Aim 1) alongside biochemical assays to detangle the mechanisms
important for EV intracranial delivery. We will utilize EVs isolated from gliatropic “experts”, namely a vast library
of glioblastoma (GBM) patient derived primary cell lines, brain-metastasizing breast cancer cells, and other glial
and neuronal cells like astrocytes and neurons. Key molecular players important for intracranial delivery identified
from those studies will feedback into synthesis of engineered EVs (eEVs) via subsequent fusion with carrier EVs
(Aim 2). For the engineered eEV product, we will also incorporate synthetic liposomes decorated with known
ligands to trigger receptor mediated transcytosis through the BBB endothelial layer. To provide the greatest
opportunity to measure efficiency of functional intracranial delivery, we plan to load formulated, labeled, and
homogenized eEVs with a chemotherapeutic payload and determine drug-release profile, biodistribution, and
efficacy in healthy mice with intact BBBs and then an orthotopic GBM model (Aim 3). The proposed work is
important because it seeks to eliminate the highly confounding factor of particle-to-particle variability plaguing
effective application of EVs as potent drug-delivery vehicles. Success in homogenizing eEVs will result in an
increased understanding of their biological function and assist in their application to combat a wide variety of
neurological disorders where current drug delivery approaches are thwarted by low intracranial delivery.
项目概要/摘要
该研究的目的是设计一个具有高靶向性的生物纳米颗粒平台。
颅内递送和神经胶质细胞靶向在药物递送和成像中具有广泛的适用性。
阐明某些细胞外囊泡 (EV) 交叉能力的工作已经完成
内皮屏障,特别是血脑屏障(BBB) 其他工作已经证实 EV 表现出。
对特定组织和细胞类型具有良好的趋向性。该提案的重点是了解
某些电动汽车亚群实现这些壮举的机制,并将它们设计成混合动力车
鉴于最近对 EV 结构和功能的大量研究,它是脂质体-EV 药物递送平台。
众所周知,它们表现出相当大的成分异质性,但基本问题仍然存在。
EV 规定的功能在这些亚人群中有何不同,很可能存在脱靶效应和影响。
使用工程模拟物捕获原生电动汽车功能效率低下的原因是它们的大量
我们的第一个假设是电动汽车的同质化趋向于尺寸范围狭窄且统一的情况。
生物分子内容将产生更有效、更可控的药物输送平台,以维持天然 EV
我们的第二个假设是均质化 EV 和的融合。
具有各种功能的脂质体(即通过受体介导的转胞吞作用有效的 BBB 渗透)将
我们计划通过解决这些假设来提供结合所需功能的工程产品。
严格的工程设计使 EV 均质化(目标 1),同时进行生化分析以理清机制
对于 EV 颅内输送非常重要,我们将利用从神经胶质细胞“专家”中分离出来的 EV,即一个庞大的库。
胶质母细胞瘤 (GBM) 患者来源的原代细胞系、脑转移性乳腺癌细胞和其他神经胶质细胞
以及星形胶质细胞和神经元等神经元细胞,已确定对颅内递送至关重要的关键分子。
这些研究的成果将通过随后与载体电动汽车的融合反馈到工程电动汽车(eEV)的合成中
(目标 2)对于工程 eEV 产品,我们还将采用已知的装饰合成脂质体。
配体通过 BBB 内皮层触发受体介导的转胞吞作用。
有机会测量功能性颅内输送的效率,我们计划加载配制好的、贴标签的和
具有化疗有效负载的均质化 eEV,并确定药物释放曲线、生物分布和
在具有完整 BBB 的健康小鼠和原位 GBM 模型中的疗效(目标 3)。
很重要,因为它试图消除困扰粒子间变异性的高度混杂因素
EV 作为有效的药物输送工具的有效应用将导致 eEV 均质化。
增加对其生物学功能的了解,并协助其应用来对抗多种疾病
神经系统疾病,目前的药物输送方法因颅内输送量低而受阻。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Randy Carney其他文献
Randy Carney的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Randy Carney', 18)}}的其他基金
Bottom-up, high-throughput prototyping of extracellular vesicle mimetics using cell-free synthetic biology
使用无细胞合成生物学对细胞外囊泡模拟物进行自下而上的高通量原型设计
- 批准号:
10638114 - 财政年份:2023
- 资助金额:
$ 53.36万 - 项目类别:
A miniaturized neural network enabled nanoplasmonic spectroscopy platform for label-free cancer detection in biofluids
微型神经网络支持纳米等离子体光谱平台,用于生物流体中的无标记癌症检测
- 批准号:
10658204 - 财政年份:2023
- 资助金额:
$ 53.36万 - 项目类别:
SERS diagnostics platform for liquid bioapsy analysis of tumor-associated exosomes
用于肿瘤相关外泌体液体活检分析的 SERS 诊断平台
- 批准号:
9973569 - 财政年份:2020
- 资助金额:
$ 53.36万 - 项目类别:
SERS diagnostics platform for liquid bioapsy analysis of tumor-associated exosomes
用于肿瘤相关外泌体液体活检分析的 SERS 诊断平台
- 批准号:
10377437 - 财政年份:2020
- 资助金额:
$ 53.36万 - 项目类别:
SERS diagnostics platform for liquid bioapsy analysis of tumor-associated exosomes
用于肿瘤相关外泌体液体活检分析的 SERS 诊断平台
- 批准号:
10593985 - 财政年份:2020
- 资助金额:
$ 53.36万 - 项目类别:
相似国自然基金
星形胶质细胞多巴胺D1受体调控焦虑样行为的机制研究
- 批准号:32300968
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
星形胶质细胞mGluR3增强GABA转运导致抑郁样行为
- 批准号:32300840
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
生命早期低水平铅暴露通过HMGCS1干扰星形胶质细胞胆固醇代谢导致神经行为异常的机制研究
- 批准号:82304087
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
星形胶质细胞的 Ldha 通过乳酸穿梭机制调控抑郁样行为
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
外侧缰核星形胶质细胞连接蛋白在早期生活压力所致抑郁样行为中的作用和机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Early life bladder inflammatory events in female mice lead to subsequent LUTS in adulthood
雌性小鼠生命早期的膀胱炎症事件导致成年后的 LUTS
- 批准号:
10638866 - 财政年份:2023
- 资助金额:
$ 53.36万 - 项目类别:
Potential of tissue kallikreins as therapeutic targets for neuropsychiatric lupus
组织激肽释放酶作为神经精神狼疮治疗靶点的潜力
- 批准号:
10667764 - 财政年份:2023
- 资助金额:
$ 53.36万 - 项目类别:
RECIPROCAL FEEDBACK MECHANISMS OF GLIOBLASTOMA AND NEURONAL NETWORK HYPEREXCITABILITY
胶质母细胞瘤与神经网络过度兴奋的交互反馈机制
- 批准号:
10629813 - 财政年份:2023
- 资助金额:
$ 53.36万 - 项目类别:
Stabilizing the tripartite synaptic complex following TBI
TBI 后稳定三方突触复合体
- 批准号:
10844877 - 财政年份:2023
- 资助金额:
$ 53.36万 - 项目类别:
Investigating how bHLH circuits integrate signals for cell fate decisions
研究 bHLH 电路如何整合信号以决定细胞命运
- 批准号:
10722452 - 财政年份:2023
- 资助金额:
$ 53.36万 - 项目类别: