Converting cytoskeletal forces into biochemical signals
将细胞骨架力转化为生化信号
基本信息
- 批准号:10655891
- 负责人:
- 金额:$ 33.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-15 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:ActinsBindingBiochemicalBiological ProcessBiophysical ProcessBiophysicsBundlingCell Cycle ArrestCell DeathCell LineCell NucleusCell physiologyCell-Matrix JunctionCellsCellular AssayClustered Regularly Interspaced Short Palindromic RepeatsComplexCoupledCryo-electron tomographyCryoelectron MicroscopyCytoplasmCytoskeletal ModelingCytoskeletonDataDevelopmentDiseaseDissectionEnvironmentEvaluationEventFHL1 geneFilamentFluorescence MicroscopyFunctional disorderGene ExpressionGene Expression RegulationGenerationsGenesHomeostasisIndividualKnock-outLinkLobular NeoplasiaMalignant NeoplasmsMechanicsMediatingMembraneMethodsMicrofilamentsMolecular StructureMotorMuscular DystrophiesMyosin ATPaseNuclearOutcomeOutputPathway interactionsPhysical condensationPolymersProtein EngineeringProteinsReportingResolutionRoleRuptureSignal TransductionSiteStress FibersStructureTechnologyTestingTherapeuticTissuesTranscription Factor AP-1VisualizationWorkZYX genealpha Actininforce feedbackimmune functionin vivoinhibitorinnovationmechanical signalmechanotransductionnanometer resolutionpolymerizationpreventprotein crosslinkreconstitutionreconstructionrecruitrepairedtherapeutic targettranscriptome sequencingtransmission processvasodilator-stimulated phosphoprotein
项目摘要
PROJECT SUMMARY
Cells perceive mechanical cues in their local environments, which must be converted into intracellular
biochemical signals to modulate cellular physiology and control gene expression. There is increasing
appreciation for mechanical signal transduction’s (“mechanotransduction”) critical role in development and its
dysfunction in disease states such as cancer. However, in contrast to canonical signal transduction, cellular force
sensing is poorly understood, hampering efforts to define mechanistically distinct mechanotransduction
pathways, delineate their specific biological functions, and target them therapeutically.
The actin cytoskeleton, a network of dynamic actin filaments, myosin motor proteins, and hundreds of
associated factors, enables cells to mechanically interface with their surroundings. The cytoskeleton is classically
understood to serve as a force generation and transmission apparatus that indirectly facilitates mechano-
transduction through its physical linkages to membrane-anchored sites which mediate force signal conversion
(e.g. cell-cell and cell-matrix adhesions). However, we and others have recently reported direct binding of soluble
cytosolic proteins containing tandem arrays of LIM (LIN-11, Isl-1 & Mec-3) domains to tensed actin filaments,
suggesting that the cytoskeleton itself may have the capacity to transduce forces into biochemical signals. Here
I propose to test the hypothesis that force-activated actin binding by distinct LIM proteins is upstream of
functionally discrete downstream mechanotransduction pathways. Through cellular assays and biophysical
reconstitution, we will investigate how the representative force-activated actin binding LIM proteins zyxin (Aim 1)
and FHL1/2 (Four-and-a-Half LIM domains 1/2, Aim 2) mediate distinct downstream functions in cytoplasmic
cytoskeletal damage repair and nuclear gene expression regulation, respectively. We will then innovatively
interface these approaches with cryo-electron microscopy (cryo-EM) to visualize force-activated actin binding by
LIM proteins in structural detail (Aim 3). Our studies will establish how a conserved mechanism of force
transduction through LIM domains is linked to distinct downstream signaling outcomes, which is likely to reveal
general principles underlying the modular organization of cytoskeletal mechanical signaling networks. In the
longer term, this work will enable precision dissection of context-specific biological functions of LIM proteins in
vivo, facilitating rigorous evaluation of their potential as therapeutic targets.
项目概要
细胞感知局部环境中的机械信号,必须将其转化为细胞内信号
调节细胞生理学和控制基因表达的生化信号越来越多。
认识机械信号转导(“机械转导”)在发育中的关键作用及其
然而,与典型的信号转导相反,细胞力。
人们对传感知之甚少,阻碍了定义机械上不同的机械转导的努力
途径,描述其特定的生物学功能,并针对它们进行治疗。
肌动蛋白细胞骨架,动态肌动蛋白丝、肌球蛋白运动蛋白和数百个的网络
相关因素使细胞能够与周围环境进行机械连接。
被理解为作为力的产生和传输装置,间接促进机械-
通过与介导力信号转换的膜锚定位点的物理连接进行转导
(例如细胞-细胞和细胞-基质粘附)然而,我们和其他人最近报道了可溶性的直接结合。
含有 LIM(LIN-11、Isl-1 和 Mec-3)结构域与张紧肌动蛋白丝串联阵列的胞质蛋白,
这表明细胞骨架本身可能具有将力转化为生化信号的能力。
我建议检验以下假设:不同 LIM 蛋白的强制激活肌动蛋白结合位于
通过细胞测定和生物物理功能离散的下游机械转导途径。
重建后,我们将研究代表性的力激活肌动蛋白如何结合 LIM 蛋白 zyxin(目标 1)
和 FHL1/2(四个半 LIM 结构域 1/2,目标 2)介导细胞质中不同的下游功能
然后我们将分别创新性地进行细胞骨架损伤修复和核基因表达调控。
将这些方法与冷冻电子显微镜(cryo-EM)结合起来,通过以下方式可视化力激活的肌动蛋白结合
LIM 蛋白的结构细节(目标 3)。
通过 LIM 结构域的转导与不同的下游信号传导结果相关,这可能揭示
细胞骨架机械信号网络模块化组织的一般原则。
从长远来看,这项工作将能够精确解析 LIM 蛋白的特定生物功能
体内,促进对其作为治疗靶点的潜力进行严格评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GREGORY M ALUSHIN其他文献
GREGORY M ALUSHIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GREGORY M ALUSHIN', 18)}}的其他基金
Structural Mechanisms of Cytoskeletal Force-Sensing
细胞骨架力传感的结构机制
- 批准号:
10178249 - 财政年份:2021
- 资助金额:
$ 33.9万 - 项目类别:
Structural Mechanisms of Cytoskeletal Force-Sensing
细胞骨架力传感的结构机制
- 批准号:
10382368 - 财政年份:2021
- 资助金额:
$ 33.9万 - 项目类别:
Structural Mechanisms of Cytoskeletal Force-Sensing
细胞骨架力传感的结构机制
- 批准号:
10579395 - 财政年份:2021
- 资助金额:
$ 33.9万 - 项目类别:
Structural Mechanisms of Cytoskeletal Force-Sensing
细胞骨架力传感的结构机制
- 批准号:
10584619 - 财政年份:2021
- 资助金额:
$ 33.9万 - 项目类别:
相似国自然基金
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:
利用分子装订二硫键新策略优化改造α-芋螺毒素的研究
- 批准号:82104024
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
CST蛋白复合体在端粒复制中对端粒酶移除与C链填补调控的分子机制研究
- 批准号:31900521
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Wdr47蛋白在神经元极化中的功能及作用机理的研究
- 批准号:31900503
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
ID1 (Inhibitor of DNA binding 1) 在口蹄疫病毒感染中作用机制的研究
- 批准号:31672538
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
相似海外基金
Decoding dynamic interplay between signaling and membranes in chemotaxis bymolecular actuators
通过分子致动器解码趋化中信号传导和膜之间的动态相互作用
- 批准号:
10846921 - 财政年份:2023
- 资助金额:
$ 33.9万 - 项目类别:
Full Project 1: Defining Mechanisms of MICAL-dependent Pancreatic Cancer Cell Migration
完整项目 1:MICAL 依赖性胰腺癌细胞迁移的定义机制
- 批准号:
10762273 - 财政年份:2023
- 资助金额:
$ 33.9万 - 项目类别:
Actin gating of crosstalk between Rho GTPases in cell migration
细胞迁移中 Rho GTP 酶之间串扰的肌动蛋白门控
- 批准号:
10736927 - 财政年份:2023
- 资助金额:
$ 33.9万 - 项目类别:
Genetic Analyses of Dendrite Morphogenesis in Caenorhabditis Elegans
秀丽隐杆线虫树突形态发生的遗传分析
- 批准号:
10736702 - 财政年份:2023
- 资助金额:
$ 33.9万 - 项目类别:
microRNA-Regulated Mechanisms Essential for Structural Plasticity of Drosophila Glutamatergic Synapses
microRNA 调控机制对于果蝇谷氨酸突触的结构可塑性至关重要
- 批准号:
10792326 - 财政年份:2023
- 资助金额:
$ 33.9万 - 项目类别: