Structural Mechanisms of Cytoskeletal Force-Sensing
细胞骨架力传感的结构机制
基本信息
- 批准号:10382368
- 负责人:
- 金额:$ 33.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-06 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalActin-Binding ProteinActinsAdhesionsArchitectureBindingBinding ProteinsBioinformaticsBiological AssayBiophysicsBody partCardiomyopathiesCell physiologyCellsChemical StructureChemicalsCryo-electron tomographyCryoelectron MicroscopyCuesCytoskeletonDataDevelopmentDiseaseDrug DesignDrug TargetingElementsEnvironmentEventExposure toF-ActinF-actin-binding proteinsFilamentFoundationsFunctional disorderGoalsHealthImage AnalysisInterventionLengthMalignant NeoplasmsMechanicsMicrofilamentsModelingMolecularMolecular ConformationMolecular MotorsMotorMotor ActivityMutationMyosin ATPaseOutcomePathway interactionsPhysiologicalPolymersPreparationProcessProtein RegionProteinsProteomeRegulationResearch Project GrantsResolutionRoleSamplingSeriesSideSignal PathwaySignal TransductionSignaling ProteinStructureSurfaceSystemTestingTherapeuticVinculinWeight-Bearing statealpha cateninbasecalponincancer cellcell behaviorcofilincomparativecompleted suicidedeep learningdesigndetectordrug developmentdrug discoveryflexibilityfluid flowhuman diseaseimmune functionin vivoinsightknowledgebasemacromolecular assemblymechanical forcemechanical signalmechanotransductionmutantnetwork architectureprotein structureprotein structure functionreceptorreconstitutiontherapeutic developmenttherapeutic targetthree dimensional structure
项目摘要
PROJECT SUMMARY
Cells in the body perceive cues from their local environment, which control cellular behavior through a
coordinated series of molecular events known as signaling. Signaling is critically important for telling a cell if it
should grow and divide, migrate to a different part of the body, or commit suicide if it has completed its function
or been irreparably damaged. Frequently, signaling processes are found to be working incorrectly in diseased
cells. For instance, cancer cells divide and migrate out of control and ignore cues which should keep them in
check. Signals come in multiple forms. Specific molecules bind and activate cognate receptor proteins in the cell,
known as “chemical signaling”, which is broadly well-understood. Physical forces and the rigidity of a cell’s
environment also elicit specific cell behaviors, but we have a comparatively poor understanding of how proteins
transmit these “mechanical signals”. A significant fraction of successful drugs target protein molecules which
operate in chemical signaling. The development of many such treatments was stimulated by determining the
detailed three-dimensional chemical structures of the interactions between receptor proteins and the molecules
which activate them, facilitating the design of drugs which precisely intervene in these processes. Despite its
importance, efforts to therapeutically target mechanical signaling have been limited. The long-term goal of this
research project is to visualize how forces modulate the three-dimensional structure of mechanical signaling
proteins to activate them, in order to facilitate the development of drugs that block these changes.
This proposal is specifically focused on understanding how cellular polymers (“filaments”) composed of
the protein actin coordinate mechanical signaling. The cell contains many networks composed of actin filaments,
myosin molecular motor proteins, and hundreds of other binding partners, which collectively generate and
transmit diverse forces. We hypothesize that specific types of forces cause distinct physical rearrangements in
actin filaments, which can be detected by other proteins in the cell through direct binding interactions. We will
identify proteins which bind actin in a force-sensitive manner (Aim 1), focusing specifically on delineating the
precise regions of the proteins which confer force-sensitivity. We will next visualize how side-wise bending forces
(Aim 2) and length-wise tensile and compressive forces generated by myosin motor proteins (Aim 3) impact actin
filament structure, hypothesizing these force regimes produce distinct rearrangements which can be
discriminated by binding partners. In pursuit of these Aims, we are developing sample preparation and
computational image analysis approaches to visualize the three-dimensional structure of actin polymers in the
presence of mechanical forces with cryo-electron microscopy (cryo-EM). In addition to providing basic insights
into how forces are perceived by cells through changes in protein structure, our studies will guide the
development of precise molecular interventions into mechanical signaling processes governed by actin.
项目摘要
体内的细胞从其当地环境中感知线索,这些线索通过A控制细胞行为
协调的一系列分子事件被称为信号传导。信号传导对于告诉单元是否至关重要
应该成长和分裂,迁移到身体的另一部分,或者自杀
或不可弥补的损坏。经常发现信号传导过程在解散中工作不正确
细胞。例如,癌细胞划分和迁移失控,忽略应将其保持在内的线索
查看。信号有多种形式。特定的分子结合并激活细胞中的同源受体蛋白,
被称为“化学信号传导”,这是广泛理解的。物理力和细胞的刚度
环境也引起特定的细胞行为,但我们对蛋白质的了解相对较差
传输这些“机械信号”。大量的成功药物靶向蛋白质分子
在化学信号传导中运行。通过确定了许多此类治疗的发展
受体蛋白与分子之间相互作用的详细的三维化学结构
激活它们,促进精确干预这些过程的药物的设计。尽管有它
重要性,热门靶向机械信号的努力受到限制。这个长期目标
研究项目是为了可视化力如何调节机械信号的三维结构
蛋白质激活它们,以促进阻止这些变化的药物的发展。
该建议专门针对理解细胞聚合物(“丝”)如何由
蛋白质肌动蛋白坐标机械信号传导。该单元包含许多由肌动蛋白丝组成的网络,
肌球蛋白分子运动蛋白,以及数百个其他结合伴侣,它们共同产生和
传递多种力量。我们假设特定类型的力在
肌动蛋白丝,可以通过直接结合相互作用在细胞中的其他蛋白质检测到。我们将
鉴定以力敏感方式结合肌动蛋白的蛋白质(AIM 1),专门针对描述
会议力敏感性的蛋白质的精确区域。接下来,我们将可视化侧面弯曲力
(AIM 2)和肌球蛋白运动蛋白产生的长度拉伸和压缩力(AIM 3)撞击肌动蛋白
细丝结构,假设这些力度制定会产生不同的重排
受约束力的伙伴歧视。为了追求这些目的,我们正在开发样本准备和
计算图像分析的方法,可视化肌动蛋白聚合物的三维结构
具有冷冻电子显微镜(Cryo-EM)的机械力的存在。除了提供基本见解
细胞如何通过蛋白质结构的变化来感知力,我们的研究将指导
将精确的分子干预措施开发为由肌动蛋白控制的机械信号传导过程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GREGORY M ALUSHIN其他文献
GREGORY M ALUSHIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GREGORY M ALUSHIN', 18)}}的其他基金
Converting cytoskeletal forces into biochemical signals
将细胞骨架力转化为生化信号
- 批准号:
10655891 - 财政年份:2023
- 资助金额:
$ 33.9万 - 项目类别:
Structural Mechanisms of Cytoskeletal Force-Sensing
细胞骨架力传感的结构机制
- 批准号:
10178249 - 财政年份:2021
- 资助金额:
$ 33.9万 - 项目类别:
Structural Mechanisms of Cytoskeletal Force-Sensing
细胞骨架力传感的结构机制
- 批准号:
10579395 - 财政年份:2021
- 资助金额:
$ 33.9万 - 项目类别:
Structural Mechanisms of Cytoskeletal Force-Sensing
细胞骨架力传感的结构机制
- 批准号:
10584619 - 财政年份:2021
- 资助金额:
$ 33.9万 - 项目类别:
相似国自然基金
肌动蛋白结合蛋白Xirp2介导基质刚度诱导心肌细胞肥大的力学生物学机制
- 批准号:12372314
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
肌动蛋白结合蛋白ANLN在胆汁淤积性肝损伤后肝再生过程中的作用及机制研究
- 批准号:82370648
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
转录因子Pax5调控肌动蛋白结合蛋白诱导线粒体凋亡在神经管畸形发生过程中的作用机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肌动蛋白结合蛋白2降调通过Rap1信号通路参与子痫前期发病的机制研究
- 批准号:82171676
- 批准年份:2021
- 资助金额:56.00 万元
- 项目类别:面上项目
肌动蛋白结合蛋白2降调通过Rap1信号通路参与子痫前期发病的机制研究
- 批准号:
- 批准年份:2021
- 资助金额:56 万元
- 项目类别:面上项目
相似海外基金
Molecular Determinants of Kidney Podocyte Architecture in Health, Injury, and Recovery
健康、损伤和恢复中肾足细胞结构的分子决定因素
- 批准号:
10659239 - 财政年份:2022
- 资助金额:
$ 33.9万 - 项目类别:
Molecular and cellular mechanisms of the actin cytoskeleton organization and function
肌动蛋白细胞骨架组织和功能的分子和细胞机制
- 批准号:
10419950 - 财政年份:2022
- 资助金额:
$ 33.9万 - 项目类别:
Discovery of Cell-based Chemical Probes Targeting Aberrant Angiogenesis in the Eye
发现针对眼部异常血管生成的基于细胞的化学探针
- 批准号:
10453044 - 财政年份:2022
- 资助金额:
$ 33.9万 - 项目类别:
Pancreatic cancer-associated fibroblasts: function, detection, and regulation
胰腺癌相关成纤维细胞:功能、检测和调节
- 批准号:
10418178 - 财政年份:2022
- 资助金额:
$ 33.9万 - 项目类别:
Molecular and cellular mechanisms of the actin cytoskeleton organization and function
肌动蛋白细胞骨架组织和功能的分子和细胞机制
- 批准号:
10797753 - 财政年份:2022
- 资助金额:
$ 33.9万 - 项目类别: