Interpretable Deep Learning Methods to Investigate Genetics and Epigenetics of Alzheimer's Disease at a Single-Cell Resolution
可解释的深度学习方法以单细胞分辨率研究阿尔茨海默病的遗传学和表观遗传学
基本信息
- 批准号:10698166
- 负责人:
- 金额:$ 63.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-30 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAccelerationAddressAdultAffectAgeAlzheimer&aposs DiseaseAlzheimer&aposs disease related dementiaAlzheimer&aposs disease riskAutopsyBenchmarkingBiological AssayBoundary ElementsBrainBrain regionCellsChromatinClustered Regularly Interspaced Short Palindromic RepeatsCodeCollaborationsCommunitiesComplexComputer ModelsComputer softwareConfusionDataDimensionsDiseaseDropoutElderlyEpigenetic ProcessEtiologyEventExcisionFamilyGenderGene Expression RegulationGenesGeneticGenomeGenome engineeringGenomicsGenotypeGraphHealth Care CostsHeterogeneityHi-CHybridsImpaired cognitionIndividualKnowledgeLearningLifeLinkMemory LossMethodsModalityModelingMolecularMultiomic DataNeurosciencesPatientsPatternPersonal SatisfactionPhenotypePrevention strategyRegulator GenesRegulatory ElementReportingResearchResolutionRisk FactorsSamplingSchemeSeriesSoftware ToolsSpecificitySystemTranscriptional RegulationVariantcell typecognitive abilitycomputer sciencedeep learningdeep learning modeldifferential expressioneffective therapyepigenomeepigenomicsflexibilityfunctional genomicsgenetic variantgenome annotationgenome wide association studygenomic datahigh dimensionalityinfancylearning strategymembermultimodal datamultimodalitymultiple omicsneuralnovelopen sourcepredictive modelingreconstructionrisk variantsequencing platformsingle cell sequencingsupervised learningtooltranscription factortranscriptometranscriptomicstreatment strategy
项目摘要
Alzheimer's disease and related dementias (ADRDs) are complex multifactorial disorders characterized
by progressive memory loss, confusion, and impaired cognitive abilities in older adults. In addition to
genetic variants, studies have reported that certain epigenetic, network, and genome organizational
perturbations, and their complex interplay, contribute to ADRD progression, informing new cellular
etiologies. The recent single-cell revolution, especially multimodal genomic profiling, makes it possible
to scrutinize multi-scale dysregulations in ADRDs at the finest possible resolution. However, few
methods have been developed to address this critical yet challenging task due to the high missingness,
dimensionality, and complex feature interactions in single-cell data. In this project, we will develop
interpretable deep learning methods and software tools to highlight multi-scale dysregulations
contributing to ADRDs, including genetic, epigenetic, network, and chromatin structural alterations at
a single-cell resolution.
Distinct from previous efforts reporting a set of one-dimensional (1D) functional cis-regulatory
elements (CREs) from only one genome and applying it to all samples, we aim to construct personal,
compact, gene-centric, and cell-type-specific brain regulome from sc-multiome data. Specifically,
we will first propose a scalable multimodal deep generative model to integrate large-scale,
heterogeneous ADRD single-cell data with single-, multi-, and hybrid modalities. Distinct to existing
methods, we will include an invariant representation learning scheme to derive latent cell
representations uncorrelated with confounding factors (e.g., age, gender, read depth, and batch effects)
for bias-free transcriptome and epigenome reconstruction (Aim 1). Then, we will go beyond the 1D
genome annotation by deciphering the multi-scale gene regulation code (Aim 2), including cell-type-
specific chromatin compartmentation, CREs and their target genes for functional interpretation, and
transcription factor (TF) regulatory networks (TRNs). Lastly, we will develop interpretable deep learning
models to link multi-scale dysregulations to ADRD with mechanistic explanation (Aim 3).
This proposal is built on an existing multi-year collaboration among the Zhang, Won, and
Gerstein labs that originated from the ENCODE and PsychENCODE projects, with diverse expertise in
computer science, neuroscience, and genomics. Upon completion, our proposal will significantly
accelerate research in a broader scientific community by providing essential tools to investigate
functional regions in the genome and prioritize multi-scale risk factors for ADRD.
阿尔茨海默氏病和相关痴呆症(ADRDS)是复杂的多因素疾病。
通过渐进的记忆力丧失,混乱和老年人认知能力受损。此外
遗传变异,研究报告说,某些表观遗传学,网络和基因组组织
扰动及其复杂的相互作用,有助于ADRD进展,告知新的细胞
病因。最近的单细胞革命,尤其是多模式基因组分析,使其成为可能
以最好的分辨率仔细检查ADRD中的多尺度失调。但是,很少
由于缺失高,已经开发了解决这一关键但具有挑战性的任务的方法
单细胞数据中的维度和复杂特征相互作用。在这个项目中,我们将开发
可解释的深度学习方法和软件工具突出显示多尺度失调
为ADRD做出贡献,包括遗传,表观遗传学,网络和染色质结构改变
单细胞分辨率。
与以前报告一组一维(1D)功能顺式调节的努力不同
元素(CRE)仅从一个基因组中,并将其应用于所有样本,我们的目标是建造个人,
来自SC-Multiome数据的紧凑,以基因为中心和细胞类型的大脑调节组。具体来说,
我们将首先提出一个可扩展的多模式深生成模型,以整合大规模,
具有单,多和混合方式的异质ADRD单细胞数据。与现有不同
方法,我们将包括一个不变的表示学习方案,以得出潜在的细胞
与混杂因素(例如年龄,性别,阅读深度和批处理效应)不相关的表示形式
用于无偏置转录组和表观基因组重建(AIM 1)。然后,我们将超越1D
通过解读多尺度基因调节代码(AIM 2)的基因组注释,包括细胞类型
特定的染色质隔室,CRE及其靶基因用于功能解释,并且
转录因子(TF)调节网络(TRN)。最后,我们将发展可解释的深度学习
将多尺度失调与机械解释联系起来的模型(AIM 3)。
该提案建立在张,胜利和
Gerstein Labs源自编码和心理码项目,具有多样的专业知识
计算机科学,神经科学和基因组学。完成后,我们的建议将大大
通过提供基本工具来调查,加速更广泛的科学界的研究
基因组中的功能区域,并确定ADRD的多尺度风险因素。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JING ZHANG其他文献
JING ZHANG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JING ZHANG', 18)}}的其他基金
Interpretable Deep Learning Methods to Investigate Genetics and Epigenetics of Alzheimer's Disease at a Single-Cell Resolution
可解释的深度学习方法以单细胞分辨率研究阿尔茨海默病的遗传学和表观遗传学
- 批准号:
10515457 - 财政年份:2022
- 资助金额:
$ 63.43万 - 项目类别:
A big data approach to explore epigenetic heterogeneity and interpret noncoding variants for psychiatric disorders
探索表观遗传异质性并解释精神疾病非编码变异的大数据方法
- 批准号:
10431884 - 财政年份:2020
- 资助金额:
$ 63.43万 - 项目类别:
A big data approach to explore epigenetic heterogeneity and interpret noncoding variants for psychiatric disorders
探索表观遗传异质性并解释精神疾病非编码变异的大数据方法
- 批准号:
10219797 - 财政年份:2020
- 资助金额:
$ 63.43万 - 项目类别:
A big data approach to explore epigenetic heterogeneity and interpret noncoding variants for psychiatric disorders
探索表观遗传异质性并解释精神疾病非编码变异的大数据方法
- 批准号:
10640918 - 财政年份:2020
- 资助金额:
$ 63.43万 - 项目类别:
A big data approach to explore epigenetic heterogeneity and interpret noncoding variants for psychiatric disorders
探索表观遗传异质性并解释精神疾病非编码变异的大数据方法
- 批准号:
10039384 - 财政年份:2020
- 资助金额:
$ 63.43万 - 项目类别:
相似国自然基金
基于腔光机械效应的石墨烯光纤加速度计研究
- 批准号:62305039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于自持相干放大的高精度微腔光力加速度计研究
- 批准号:52305621
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
位移、加速度双控式自复位支撑-高层钢框架结构的抗震设计方法及韧性评估研究
- 批准号:52308484
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高离心加速度行星排滚针轴承多场耦合特性与保持架断裂失效机理研究
- 批准号:52305047
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于偏心光纤包层光栅的矢量振动加速度传感技术研究
- 批准号:62305269
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
- 批准号:
10727940 - 财政年份:2023
- 资助金额:
$ 63.43万 - 项目类别:
Selective Radionuclide Delivery for Precise Bone Marrow Niche Alterations
选择性放射性核素输送以实现精确的骨髓生态位改变
- 批准号:
10727237 - 财政年份:2023
- 资助金额:
$ 63.43万 - 项目类别:
Bridging the gap: joint modeling of single-cell 1D and 3D genomics
弥合差距:单细胞 1D 和 3D 基因组学联合建模
- 批准号:
10572539 - 财政年份:2023
- 资助金额:
$ 63.43万 - 项目类别:
Commercial translation of high-density carbon fiber electrode arrays for multi-modal analysis of neural microcircuits
用于神经微电路多模态分析的高密度碳纤维电极阵列的商业转化
- 批准号:
10761217 - 财政年份:2023
- 资助金额:
$ 63.43万 - 项目类别:
Parallel Characterization of Genetic Variants in Chemotherapy-Induced Cardiotoxicity Using iPSCs
使用 iPSC 并行表征化疗引起的心脏毒性中的遗传变异
- 批准号:
10663613 - 财政年份:2023
- 资助金额:
$ 63.43万 - 项目类别: