A big data approach to explore epigenetic heterogeneity and interpret noncoding variants for psychiatric disorders
探索表观遗传异质性并解释精神疾病非编码变异的大数据方法
基本信息
- 批准号:10640918
- 负责人:
- 金额:$ 11.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-17 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAffectAutopsyAwardBig DataBindingBiochemistryBiological AssayBiological ProcessBiophysicsBrainChIP-seqChromatinCommunitiesComputer softwareComputing MethodologiesDataData ScientistDatabasesDependenceDevelopmentDimensionsDiseaseDistalElementsEnhancersEntropyEpigenetic ProcessEventGene Expression RegulationGenesGeneticGenetic RiskGenetic TranscriptionGenetic VariationGenomeGenomicsHeritabilityHeterogeneityHumanIncidenceIndividualKnowledgeLearningLinkMachine LearningMapsMental disordersMentorshipMethodsModelingMolecularNucleic Acid Regulatory SequencesPatientsPatternPhenotypePopulationPrefrontal CortexProteinsPsychiatric DiagnosisRegulatory ElementReporterReportingResearchResearch PersonnelResolutionResourcesRisk FactorsSamplingScanningScoring MethodShapesSignal TransductionTechnologyTrainingTraining ProgramsTranscriptional RegulationUniversitiesUntranslated RNAVariantWorkcareer developmentcell typedeep learningdisorder riskepigenomeexperienceexperimental studyfunctional genomicsgene regulatory networkgenetic variantgenome-widegenomic datagenomic locusgenomic profilesinsightmachine learning methodmultimodalitymultiple omicsneurogeneticsneuropsychiatric disordernew therapeutic targetnovelnovel sequencing technologyopen sourceprogramspromoterrecruitresearch and developmentrisk varianttherapeutic targettranscription factortranscriptomicsweb services
项目摘要
PROJECT ABSTRACT
The incidence of diagnosed psychiatric disorders has been increasing for decades,
leaving millions of afflicted individuals. Despite the high heritability, their underlying molecular
mechanisms remain elusive. Most risk loci are located in noncoding genomic elements without
direct effects on protein products. Comprehensive functional annotation and variant impact
quantification are essential to provide new molecular insights and discover therapeutic targets.
Recent advances in novel sequencing technologies and community efforts to share
genomic data provide unprecedented opportunities to understand how genetic variants contribute
to psychiatric diseases. This application describes the development of integrative strategies and
machine learning methods to combine novel assays (such as STARR-seq) with population-scale
genomic profiles to elucidate the genetic regulatory grammar in the human prefrontal cortex (PFC)
and to prioritize genetic variants in psychiatric disorders. Specifically, we will (1) dissect the cis-
regulatory landscape of the PFC using population-scale epigenetics data, (2) construct multi-
model gene regulatory networks by linking distal cis-regulatory elements to genes using chromatin
co-variability analyses, (3) integrate genetic, epigenetic, and transcriptional data to identify key
transcription factors and variants that contribute to psychiatric disorders. Distinct from existing
efforts focusing on one genome, this proposed work presents a truly novel big-data approach for
both modeling gene regulation and investigating disease-risk factors by incorporating
heterogeneous multi-omics profiles from hundreds of individuals. The resultant comprehensive
list of cis-regulatory elements will expand the number of known functional regions in the human
brain by at least an order. We will release our methods and resources in the form of web services,
distributed open-source software, and annotation databases, which will also benefit other
investigators exploring the genetic underpinnings of neuropsychiatric disorders.
In addition to its scientific content, this application proposes a comprehensive training
program for preparing an independent investigator in computational genomics and neurogenetics.
This training will take place at Yale University (in the Dept. of Molecular Biophysics and
Biochemistry) under the mentorship of Prof. Mark Gerstein (functional genomics), Prof. Nenad
Sestan (neurogenetics), and Prof. Hongyu Zhao (statistical genetics and machine learning). A
committee of experienced psychiatric disease experts and data scientists will also provide advice
on both scientific research and career development.
项目摘要
数十年来,被诊断的精神疾病的发生率一直在增加
留下数百万痛苦的人。尽管具有较高的遗传力,但它们的基本分子
机制仍然难以捉摸。大多数风险基因座位于非编码基因组元素中
直接影响蛋白质产品。全面的功能注释和变体影响
定量对于提供新的分子见解并发现治疗靶标至关重要。
新颖的测序技术和社区努力分享的最新进展
基因组数据提供了前所未有的机会,以了解遗传变异如何贡献
到精神病。该应用程序描述了综合策略的发展和
将新颖测定法(例如Starr-Seq)与种群规模相结合的机器学习方法
基因组谱以阐明人前额叶皮层(PFC)中的遗传调节语法
并优先考虑精神疾病中的遗传变异。具体而言,我们将(1)剖析顺式
PFC使用种群尺度表观遗传学数据的调节景观,(2)构建多
使用染色质将远端顺式调节元素与基因联系起来,模型基因调节网络
共同变异性分析,(3)整合遗传,表观遗传和转录数据以识别密钥
导致精神疾病的转录因素和变体。与现有不同
这项拟议的工作着重于一个基因组,为一种真正新颖的大数据介绍了
通过纳入基因调控和研究疾病风险因素的建模
来自数百个人的异质多派。最终的全面
顺式调节元素列表将扩大人类已知功能区域的数量
大脑至少订单。我们将以Web服务的形式发布我们的方法和资源,
分布式开源软件和注释数据库,这也将受益其他
研究人员探索神经精神疾病的遗传基础。
除了其科学内容外,本应用程序还提出了全面的培训
准备计算基因组学和神经遗传学独立研究者的计划。
该培训将在耶鲁大学(分子生物物理学系和
生物化学)在Mark Gerstein教授(功能基因组学)的指导下,Nenad教授
Sestan(神经遗传学)和Hongyu Zhao教授(统计遗传学和机器学习)。一个
经验丰富的精神病专家和数据科学家委员会还将提供建议
关于科学研究和职业发展。
项目成果
期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
One-Shot Learning With Attention-Guided Segmentation in Cryo-Electron Tomography.
- DOI:10.3389/fmolb.2020.613347
- 发表时间:2020
- 期刊:
- 影响因子:5
- 作者:Zhou B;Yu H;Zeng X;Yang X;Zhang J;Xu M
- 通讯作者:Xu M
CryoETGAN: Cryo-Electron Tomography Image Synthesis via Unpaired Image Translation.
- DOI:10.3389/fphys.2022.760404
- 发表时间:2022
- 期刊:
- 影响因子:4
- 作者:Wu X;Li C;Zeng X;Wei H;Deng HW;Zhang J;Xu M
- 通讯作者:Xu M
STARRPeaker: uniform processing and accurate identification of STARR-seq active regions.
- DOI:10.1186/s13059-020-02194-x
- 发表时间:2020-12-08
- 期刊:
- 影响因子:12.3
- 作者:Lee D;Shi M;Moran J;Wall M;Zhang J;Liu J;Fitzgerald D;Kyono Y;Ma L;White KP;Gerstein M
- 通讯作者:Gerstein M
Venus: An efficient virus infection detection and fusion site discovery method using single-cell and bulk RNA-seq data.
- DOI:10.1371/journal.pcbi.1010636
- 发表时间:2022-10
- 期刊:
- 影响因子:4.3
- 作者:
- 通讯作者:
SCAN-IT: Domain segmentation of spatial transcriptomics images by graph neural network.
- DOI:
- 发表时间:2021-11
- 期刊:
- 影响因子:0
- 作者:Cang Z;Ning X;Nie A;Xu M;Zhang J
- 通讯作者:Zhang J
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JING ZHANG其他文献
JING ZHANG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JING ZHANG', 18)}}的其他基金
Interpretable Deep Learning Methods to Investigate Genetics and Epigenetics of Alzheimer's Disease at a Single-Cell Resolution
可解释的深度学习方法以单细胞分辨率研究阿尔茨海默病的遗传学和表观遗传学
- 批准号:
10698166 - 财政年份:2022
- 资助金额:
$ 11.3万 - 项目类别:
Interpretable Deep Learning Methods to Investigate Genetics and Epigenetics of Alzheimer's Disease at a Single-Cell Resolution
可解释的深度学习方法以单细胞分辨率研究阿尔茨海默病的遗传学和表观遗传学
- 批准号:
10515457 - 财政年份:2022
- 资助金额:
$ 11.3万 - 项目类别:
A big data approach to explore epigenetic heterogeneity and interpret noncoding variants for psychiatric disorders
探索表观遗传异质性并解释精神疾病非编码变异的大数据方法
- 批准号:
10431884 - 财政年份:2020
- 资助金额:
$ 11.3万 - 项目类别:
A big data approach to explore epigenetic heterogeneity and interpret noncoding variants for psychiatric disorders
探索表观遗传异质性并解释精神疾病非编码变异的大数据方法
- 批准号:
10219797 - 财政年份:2020
- 资助金额:
$ 11.3万 - 项目类别:
A big data approach to explore epigenetic heterogeneity and interpret noncoding variants for psychiatric disorders
探索表观遗传异质性并解释精神疾病非编码变异的大数据方法
- 批准号:
10039384 - 财政年份:2020
- 资助金额:
$ 11.3万 - 项目类别:
相似国自然基金
优先流对中俄原油管道沿线多年冻土水热稳定性的影响机制研究
- 批准号:42301138
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
开放空间内部特征对公共生活行为的复合影响效应与使用者感知机理研究
- 批准号:52308052
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
市场公平竞争与企业发展:指标测度、影响机理与效应分析
- 批准号:72373155
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
气候变暖对青藏高原高寒草甸土壤病毒多样性和潜在功能的影响
- 批准号:32301407
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高温胁迫交叉锻炼对梭梭幼苗耐旱性影响的分子机理研究
- 批准号:32360079
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Impact of Mitochondrial Lipidomic Dynamics and its Interaction with APOE Isoforms on Brain Aging and Alzheimers Disease
线粒体脂质组动力学及其与 APOE 亚型的相互作用对脑衰老和阿尔茨海默病的影响
- 批准号:
10645610 - 财政年份:2023
- 资助金额:
$ 11.3万 - 项目类别:
DNA methylation signatures of Alzheimer's disease in aged astrocytes
老年星形胶质细胞中阿尔茨海默病的 DNA 甲基化特征
- 批准号:
10807864 - 财政年份:2023
- 资助金额:
$ 11.3万 - 项目类别:
Developing new therapeutic strategies for brain metastasis
开发脑转移的新治疗策略
- 批准号:
10578405 - 财政年份:2023
- 资助金额:
$ 11.3万 - 项目类别:
Commercialization Readiness Pilot (CRP) program support for: Direct-from-specimen identification of pathogens common in endocarditis
商业化准备试点 (CRP) 计划支持: 直接从样本鉴定心内膜炎常见病原体
- 批准号:
10758417 - 财政年份:2023
- 资助金额:
$ 11.3万 - 项目类别: