Multi-probe minimally invasive endomicroscope
多探头微创内窥镜
基本信息
- 批准号:10709909
- 负责人:
- 金额:$ 23.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-23 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAblationAddressAlgorithmsAmygdaloid structureAnatomyAnimal ModelAnimalsAreaAssessment toolBehaviorBrainBrain DiseasesBrain StemBrain imagingBrain regionCalibrationCell NucleusCollectionCommunitiesCompensationComputer softwareCouplingDevelopmentDiagnosisDiameterDiseaseDistalElectronicsEndoscopesEnvironmentEpilepsyFiberFiber OpticsFluorescenceFoodFutureGenerationsHeadHumanImageImaging DeviceIndividualLasersLightLocationMachine LearningMedicalMental disordersMethodsModalityModelingMonitorMusNeuronsNeurosciencesNeurosciences ResearchNoiseOpticsParkinson DiseasePatternPenetrationPerformancePhasePopulationResearchResolutionResponse to stimulus physiologyScanningSchizophreniaScientistShapesSignal TransductionSiteSpeedSpottingsSurveysSystemTaste PerceptionTechnologyTemperatureTestingThree-Dimensional ImageThree-Dimensional ImagingTimeTissuesTranslatingTraumaValidationconfocal imagingconnectomedesigndigitalexperimental studyflexibilityfluorescence imaginghigh resolution imagingimage reconstructionimaging approachimaging capabilitiesimaging modalityimaging probein vivoin vivo imaginginnovationinstrumentinstrumentationlensmetermicroendoscopyminimally invasivemultimodalitynervous system disorderneuralneuroimagingolfactory bulboptical fiberoptogeneticsparallelizationprototyperestraintscale upsignal processingspectrographtemporal measurementtransmission process
项目摘要
PROJECT SUMMARY
This project seeks to develop a multi-probe ultrathin endomicroscope to enable high-resolution imaging and
photo-stimulation at multiple sites within currently inaccessible regions of the brain. The instrument will be
amenable to scientific studies in model animals and a stepping stone for future medical instrumentation targeted
at diagnosis and disease treatment in humans.
The company addresses the critical need in the scientific and medical fields for endoscopes that are minimally
invasive, with a cross section in the order of 100μm. The proposed system prototype will be digitally programmed,
contain no moving parts, and simultaneously address multiple probes that penetrate tissue with negligible
damage. The target application is deep brain imaging and photo-stimulation simultaneously in multiple regions
of the brain. The system will enable imaging difficult-to-reach brain areas, such as the brain stem or the olfactory
bulb, with negligible trauma to the animal. The possibility of inserting multiple imaging probes to correlate stimulation
and activity in different regions of the brain could provide new understanding of the connectome and help observe
differences between healthy and diseased brains.
Current endoscopic solutions are appropriate for insertion in large cavities but they produce excessive damage
in applications such as deep brain imaging. This project will create a minimally–invasive, robust, flexible, and
compact prototype for multi-probe endomicroscopy. The key innovation is in achieving the fundamentally thinnest
mechanism to transmit a high information content image in real time and in parallelizing it to multiple brain sites.
The individual probes have a cross-area 10 times smaller than the thinnest existing endoscopes. Further, each
of the probes will be able to deliver multiple functions: 3D imaging with micrometer resolution, fluorescence and
reflection imaging, as well as laser pattern generation for photo-stimulation and ablation.
The imaging approach implements wavefront shaping in various multimode fiber probes simultaneously, using
advanced machine learning and signal processing methods, to generate arbitrary digitally-reprogrammable light
patterns and 3D images. The system uses a spatial light modulator to first calibrate each fiber and then scan
light at high speed, compensating for the inherent modal dispersion and intermodal coupling.
The demonstration of the first in-vivo imaging and optogenetics experiments through a multimode fiber, showing
populations of neurons individually imaged at depth, with subcellular resolution, and with minimal tissue damage,
opens exciting opportunities for expansion and development into mullti-probe multi-modality systems. The
company’s initial focus is on de-risking and validating the use of multimode fiber probes in animal functional
neuro-imaging. The long-term vision is to translate the technology towards medical applications.
项目概要
该项目旨在开发一种多探头超薄内窥镜,以实现高分辨率成像和
该仪器将在目前无法到达的大脑区域的多个部位进行光刺激。
适合对模型动物进行科学研究,并为未来目标医疗仪器奠定基础
用于人类的诊断和疾病治疗。
该公司满足科学和医疗领域对内窥镜的迫切需求
侵入式,横截面约为 100μm 所提出的系统原型将进行数字编程,
不包含移动部件,并同时处理多个探针,这些探针可忽略不计地穿透组织
目标应用是在多个区域同时进行深部脑成像和光刺激
该系统将能够对难以到达的大脑区域进行成像,例如脑干或嗅觉。
灯泡,对动物的创伤可以忽略不计,可以插入多个成像探针来关联刺激。
大脑不同区域的活动可以提供对连接组的新理解并帮助观察
健康大脑和患病大脑之间的差异。
目前的内窥镜解决方案适合插入大腔内,但会产生过度损坏
该项目将创建一种微创、强大、灵活且灵活的应用。
用于多探头内窥镜检查的紧凑型原型,关键的创新在于实现最薄的设计。
实时传输高信息内容图像并将其并行化到多个大脑部位的机制。
此外,每个探头的横截面积比现有最薄内窥镜小 10 倍。
的探针将能够提供多种功能:具有微米分辨率的 3D 成像、荧光和
反射成像,以及用于光刺激和消融的激光图案生成。
该成像方法同时在各种多模光纤探头中实现波前整形,使用
先进的机器学习和信号处理方法,生成任意数字可重新编程的光
该系统使用空间光调制器首先校准每根光纤,然后进行扫描。
高速光,补偿固有的模色散和模间耦合。
通过多模光纤演示首次体内成像和光遗传学实验,显示
神经元群在深度上单独成像,具有亚细胞分辨率,并且组织损伤最小,
为多探针多模态系统的扩展和发展提供了令人兴奋的机会。
该公司最初的重点是降低和验证多模光纤探头在动物功能研究中的使用
神经成像的长期愿景是将这项技术转化为医学应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Antonio Miguel Caravaca Aguirre其他文献
Antonio Miguel Caravaca Aguirre的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Antonio Miguel Caravaca Aguirre', 18)}}的其他基金
SBIR Phase I: Ultrathin endomicroscope
SBIR 第一阶段:超薄内窥镜
- 批准号:
2212906 - 财政年份:2022
- 资助金额:
$ 23.88万 - 项目类别:
Standard Grant
相似国自然基金
低密度中性粒细胞促进早期乳腺癌微波消融治疗后复发转移的作用及机制研究
- 批准号:82303710
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
微波敏感型铁死亡纳米放大器的构建及其增敏肝癌消融-免疫联合治疗的应用与机制研究
- 批准号:82302368
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
玛纳斯河流域上游吸收性气溶胶来源及其对积雪消融的影响研究
- 批准号:42307523
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于超声混合深度神经网络对PIMSRA心肌热消融边界的实时可视化与识别研究
- 批准号:82302204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
纳米刀消融通过METTL5介导的核糖体18S rRNA m6A修饰募集MDSC促进肝癌复发的作用及机制研究
- 批准号:82373004
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Reversal of Age-Associated Damage in the Planarian Germline
涡虫种系中年龄相关损伤的逆转
- 批准号:
10606234 - 财政年份:2023
- 资助金额:
$ 23.88万 - 项目类别:
Endothelial-Leukocyte Adhesion in CAR T Cell Treatment Associated Neurotoxicity
CAR T 细胞治疗相关神经毒性中的内皮-白细胞粘附
- 批准号:
10735681 - 财政年份:2023
- 资助金额:
$ 23.88万 - 项目类别:
Improved arrhythmia ablation via MR-guided robotic catheterization and multimodal clinician feedback
通过 MR 引导的机器人导管插入术和多模式临床医生反馈改善心律失常消融
- 批准号:
10638497 - 财政年份:2023
- 资助金额:
$ 23.88万 - 项目类别:
Evaluation of smoking-associated genes in disparate Appalachian head and neck cancer
不同阿巴拉契亚头颈癌吸烟相关基因的评估
- 批准号:
10741961 - 财政年份:2023
- 资助金额:
$ 23.88万 - 项目类别: