Deciphering the molecular mechanisms of sterol lipid trafficking in bacteria
破译细菌中甾醇脂质运输的分子机制
基本信息
- 批准号:10711607
- 负责人:
- 金额:$ 34.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2028-06-30
- 项目状态:未结题
- 来源:
- 关键词:ArchaeaBacteriaBacterial ProteinsBioinformaticsBiologicalBorrelia burgdorferiCardiometabolic DiseaseCell physiologyChlamydiaCholesterolDyslipidemiasEukaryotaEukaryotic CellEventFamilyGenomic approachGenus MycobacteriumHomologous GeneHomologous ProteinHydrophobicityKnowledgeLigand BindingLigandsLipidsLipoproteinsMammalian CellMembraneMetabolismMethylococcus capsulatusMolecularOrder SpirochaetalesPathogenicityPeriplasmic Binding ProteinsProteinsRegulationReportingResearchResistanceRickettsiaSignal TransductionSignaling MoleculeSiteSterol Biosynthesis PathwaySterolsStructureTherapeutic InterventionTreponema pallidumWorkcell envelopefluiditygut microbesgut microbiomegut microbiotahydrophilicityinsightlipid metabolismlipid transportmembermicroorganism interactionnew therapeutic targetpathogenphosphonateprotein transportstress tolerancestructural genomicstrafficking
项目摘要
Project summary/abstract
Sterols lipids, including cholesterol, are important for mammalian cell physiology. These molecules
modulate the fluidity of biological membranes and are therefore implicated maintaining membrane integrity,
stress tolerance, fusion events, etc. Sterols are also involved in intra- and intercellular signaling and are trafficked
to sub-cellular membranes. Whereas decades of research have provided molecular insights into eukaryotic sterol
synthesis, transport, regulation, and function, similar understanding of sterols is lacking for bacteria and archaea.
While it is thought that archaea do not make or use sterols, some bacteria do make and transport sterols; many
others are known to engage with sterols produced by eukaryotes. These bacteria include the pathogenic
spirochetes (Borrelia burgdorferi, Treponema pallidum), Mycobacteria, Chlamydia, Rickettsia, and gut
microbiota. For pathogens, the acquisition of sterols from the host is critical as they colonize and construct their
cell envelopes. For gut microbes, interactions with cholesterol can alter the host lipid metabolism, thereby
contributing to cardiometabolic diseases and dyslipidemia. Despite the preponderance of research about
microbial interactions with these lipids, lacking are molecular insights into how the interactions occur and how
they are regulated. We will address this knowledge gap, which we posit will reveal novel targets for therapeutic
interventions in bacterial colonization and aberrant sterol lipid metabolism.
Given that some bacteria produce sterols de novo, we reasoned that achieving an understanding of sterol
handling in bacteria that make them could reveal insights into their handling in bacteria that use them. We
therefore focused on Methylcoccus capsulatus, a bacterium reported to produce sterols nearly 40 years ago.
Recent studies reported a significant divergence in sterol biosynthesis in M. capsulatus. We have since added
to those reports one showing that sterol trafficking is also substantially different. We identified three proteins that
traffic sterols: BstA, BstB, and BstC. BstA is a member of the resistance nodulation division family of transporters
that work as transporters for a wide range of bacterial metabolites. BstB is a periplasmic binding protein with
homologs involved in phosphonate transport. Finally, BstC is an outer membrane associated lipoprotein
belonging to a family of transporters whose substrates are not known. The overall structures of the Bst proteins
are markedly different from eukaryotic sterol transporters. However, they all contain ligand sites that are similar
in the presentation of hydrophobic and hydrophilic residues. We posit that a modified structural genomics
approach wherein the focus is on ligand sites instead of overall structure/sequence would enable the
identification of functionally homologous proteins in bacteria. This work will use bioinformatics, quantitative ligand
binding analyses, and structural approaches to identify and characterize sterol trafficking proteins in bacteria that
make sterols, pathogens that hijack sterols, and gut flora that modulate host sterol metabolism.
项目概要/摘要
甾醇脂质,包括胆固醇,对于哺乳动物细胞生理学很重要。这些分子
调节生物膜的流动性,因此涉及维持膜的完整性,
应激耐受、融合事件等。甾醇还参与细胞内和细胞间信号传导并被贩运
到亚细胞膜。鉴于数十年的研究提供了对真核甾醇的分子见解
合成、运输、调节和功能,细菌和古细菌对甾醇缺乏类似的了解。
虽然人们认为古细菌不产生或使用甾醇,但一些细菌确实产生和运输甾醇。许多
其他已知与真核生物产生的甾醇结合。这些细菌包括致病菌
螺旋体(伯氏疏螺旋体、梅毒螺旋体)、分枝杆菌、衣原体、立克次体和肠道
微生物群。对于病原体来说,从宿主获取甾醇对于它们定殖和构建其自身至关重要。
细胞包膜。对于肠道微生物来说,与胆固醇的相互作用可以改变宿主的脂质代谢,从而
导致心脏代谢疾病和血脂异常。尽管有关的研究占优势
微生物与这些脂质的相互作用,缺乏对相互作用如何发生以及如何发生的分子见解
他们受到监管。我们将解决这一知识差距,我们认为这将揭示治疗的新目标
干预细菌定植和异常甾醇脂质代谢。
鉴于某些细菌从头产生甾醇,我们推断,了解甾醇
对制造它们的细菌进行处理可以揭示对使用它们的细菌进行处理的见解。我们
因此,他们将重点放在了荚膜甲基球菌上,这种细菌在近 40 年前就被报道可以产生甾醇。
最近的研究报告了荚膜囊藻中甾醇生物合成的显着差异。我们已经添加了
与这些报告相比,有一份报告表明甾醇贩运也有很大不同。我们鉴定出三种蛋白质
交通甾醇:BstA、BstB 和 BstC。 BstA 是转运蛋白耐药结瘤科家族的成员
作为多种细菌代谢物的转运蛋白。 BstB 是一种周质结合蛋白
参与膦酸转运的同系物。最后,BstC 是一种外膜相关脂蛋白
属于底物未知的转运蛋白家族。 Bst蛋白的整体结构
与真核甾醇转运蛋白明显不同。然而,它们都含有相似的配体位点
疏水性和亲水性残基的呈现。我们假设改良的结构基因组学
其中重点是配体位点而不是整体结构/序列的方法将使
细菌中功能同源蛋白的鉴定。这项工作将使用生物信息学、定量配体
结合分析和结构方法来识别和表征细菌中的甾醇运输蛋白
产生甾醇、劫持甾醇的病原体以及调节宿主甾醇代谢的肠道菌群。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Rapid proteome-wide prediction of lipid-interacting proteins through ligand-guided structural genomics.
通过配体引导的结构基因组学对脂质相互作用蛋白进行快速蛋白质组预测。
- DOI:
- 发表时间:2024-01-30
- 期刊:
- 影响因子:0
- 作者:Chou, Jonathan Chiu;Decosto, Cassandra M;Chatterjee, Poulami;Dassama, Laura M K
- 通讯作者:Dassama, Laura M K
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Laura Dassama其他文献
Laura Dassama的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Laura Dassama', 18)}}的其他基金
相似国自然基金
靶向铜绿假单胞菌FpvA蛋白的铁载体偶联抗生素克服细菌耐药性及作用机制研究
- 批准号:82304313
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
CPR细菌和DPANN古菌资源勘探及其所产新型蛋白酶的研究
- 批准号:32360005
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
新型细菌源角蛋白酶KerJY-23的高效分泌表达、结构解析及分子催化机制研究
- 批准号:32360230
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
大豆蛋白原纤维-细菌纤维素脂肪替代物的多态性调控构建机制及口腔感知模拟特性研究
- 批准号:32302128
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
特异抑制病原细菌毒性蛋白分泌的植物天然产物FAD的分子机制研究
- 批准号:32370322
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Mechanism of Translation Initiation on Leaderless mRNAs
无领导者 mRNA 的翻译起始机制
- 批准号:
10593807 - 财政年份:2022
- 资助金额:
$ 34.37万 - 项目类别:
Rescue and repair of stalled ribosome damaged by ribosome-specific ribotoxins
被核糖体特异性核毒素损坏的停滞核糖体的拯救和修复
- 批准号:
10615180 - 财政年份:2022
- 资助金额:
$ 34.37万 - 项目类别:
Web-Based Resource for Genomic Enzymology Tools
基于网络的基因组酶学工具资源
- 批准号:
10548888 - 财政年份:2022
- 资助金额:
$ 34.37万 - 项目类别:
Rescue and repair of stalled ribosome damaged by ribosome-specific ribotoxins
被核糖体特异性核毒素损坏的停滞核糖体的拯救和修复
- 批准号:
10467347 - 财政年份:2022
- 资助金额:
$ 34.37万 - 项目类别:
Mechanism of Translation Initiation on Leaderless mRNAs
无领导者 mRNA 的翻译起始机制
- 批准号:
10593807 - 财政年份:2022
- 资助金额:
$ 34.37万 - 项目类别: