Methods for Fast and Efficient Oxygen Imaging
快速高效的氧气成像方法
基本信息
- 批准号:10698818
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-06 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAccelerationAcuteAnimal ModelAttentionClinicClinicalComplexComputer softwareDevelopmentElectron Spin Resonance SpectroscopyEnvironmentEvaluationFast ElectronFrequenciesFutureGoalsHourHumanHypoxiaImageImaging DeviceInbred C3H MiceIndividualInjuryLegLettersLicensingMachine LearningMalignant NeoplasmsMapsMeasurementMeasuresMethodsModelingMyocardial InfarctionNational Cancer InstituteOrgan TransplantationOxygenPathway interactionsPerformancePerfusionPeriodicityPhasePhysiologic pulseProcessRadiation Dose UnitRadiation therapyReportingResolutionScientistSpeedStrokeSystemTechniquesTechnologyTestingTimeTissuesTumor BiologyUnited States National Institutes of HealthWidthabsorptioncancer imagingcancer therapycomputerized data processingdeep learningdesigndrug developmentfibrosarcomaimage reconstructionimagerimaging modalityimaging softwareimprovedin vivoin vivo imaginginstrumentlearning networkmouse modelpre-clinicalpressurereconstructionresponsesuccesstechnology platformtherapy resistanttooltumortumor hypoxia
项目摘要
Abstract
Intermittent or acute/cyclic hypoxia in tumors, with frequencies between a few cycles per minute to hours, is
receiving increased attention because this type of hypoxia has been reported to have an influence on tumor
malignancy as well as treatment resistance via increased expression of pro-survival pathways. Fast oxygen
imaging methods are needed for the measurement of acute tumor hypoxia. Pulse electron paramagnetic
resonance imaging (pEPRI) is a promising tool to provide three-dimensional partial oxygen pressure (pO2) maps
in live tissues and tumors to assist with advanced studies of tumor biology, perfusion, drug development, and
radiation treatment. Single point imaging (SPI), an acquisition technique developed at National Cancer Institute
(NCI), is a subset of pEPRI methods that can be used for oxygen image acquisition. It provides high-resolution,
high-fidelity images but is slow due to the need for acquiring each k-space point individually. In the current
project, our goal is to improve the image acquisition speed of SPI by utilizing a combination of advanced
hardware and deep learning. This will improve the imaging speed by many folds without compromising the
image quality. These advances will be tested in a mouse model of fibrosarcoma tumor. This project will bring an
NIH-developed technology to the commercial level. Our long-term goal is to imply the advanced hardware and
software technologies of oxygen imaging to clinics to assist with oxygen-guided tumor treatments.
抽象的
肿瘤中的间歇性或急性/循环缺氧,频率在每分钟几个至小时之间,
由于据报道这种类型的缺氧对肿瘤有影响
恶性肿瘤和抗治疗性通过增加临床途径的表达。快速氧气
测量急性肿瘤缺氧需要成像方法。脉冲电子顺磁性
共振成像(PEPRI)是提供三维部分氧气(PO2)地图的有前途的工具
在活组织和肿瘤中,以帮助进行肿瘤生物学,灌注,药物开发和
辐射处理。单点成像(SPI),一种在国家癌症研究所开发的收购技术
(NCI)是可用于氧图像采集的pepri方法的子集。它提供了高分辨率,
高保真图像,但由于需要单独获取每个K空间点而慢。在电流中
项目,我们的目标是通过使用高级的组合来提高SPI的图像获取速度
硬件和深度学习。这将提高成像速度,而不会损害
图像质量。这些进步将在纤维肉瘤肿瘤的小鼠模型中进行测试。这个项目将带来一个
NIH开发的技术达到了商业层面。我们的长期目标是暗示高级硬件和
氧成像的软件技术到诊所,以帮助氧引导的肿瘤处理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mrignayani Kotecha其他文献
Mrignayani Kotecha的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mrignayani Kotecha', 18)}}的其他基金
Preclinical Oxygen Imager to Model Efficient Cancer Treatment
临床前氧成像仪可模拟有效的癌症治疗
- 批准号:
9974497 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
相似国自然基金
基于腔光机械效应的石墨烯光纤加速度计研究
- 批准号:62305039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于自持相干放大的高精度微腔光力加速度计研究
- 批准号:52305621
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
位移、加速度双控式自复位支撑-高层钢框架结构的抗震设计方法及韧性评估研究
- 批准号:52308484
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高离心加速度行星排滚针轴承多场耦合特性与保持架断裂失效机理研究
- 批准号:52305047
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于偏心光纤包层光栅的矢量振动加速度传感技术研究
- 批准号:62305269
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Commercial translation of high-density carbon fiber electrode arrays for multi-modal analysis of neural microcircuits
用于神经微电路多模态分析的高密度碳纤维电极阵列的商业转化
- 批准号:
10761217 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Selective Radionuclide Delivery for Precise Bone Marrow Niche Alterations
选择性放射性核素输送以实现精确的骨髓生态位改变
- 批准号:
10727237 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Modifying endothelial Piezo 1 function to improve brain perfusion in AD/ADRD
修改内皮 Piezo 1 功能以改善 AD/ADRD 患者的脑灌注
- 批准号:
10658645 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Characterizing chemical threat agent exposures using a lung-on-a-chip platform and multi-omic analysis of common pathophysiological mechanisms
使用芯片肺平台和常见病理生理机制的多组学分析来表征化学威胁剂暴露
- 批准号:
10708553 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Bridging the gap: joint modeling of single-cell 1D and 3D genomics
弥合差距:单细胞 1D 和 3D 基因组学联合建模
- 批准号:
10572539 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别: