Modifying endothelial Piezo 1 function to improve brain perfusion in AD/ADRD
修改内皮 Piezo 1 功能以改善 AD/ADRD 患者的脑灌注
基本信息
- 批准号:10658645
- 负责人:
- 金额:$ 62.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2028-02-29
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAccelerationAcuteAgeAgingAlzheimer&aposs DiseaseAlzheimer&aposs disease brainAlzheimer&aposs disease patientAlzheimer&aposs disease related dementiaAmyloid beta-ProteinAmyloidosisBiosensorBlood VesselsBlood flowBrainBrain PathologyCalciumCerebral Amyloid AngiopathyCerebrovascular CirculationChronicCognitionCognitiveDataDevelopmentEncephalitisEndothelial CellsEndotheliumFunctional disorderGene Expression ProfileGene Expression RegulationGliosisHyperemiaImageImpaired cognitionImpairmentInflammationIon ChannelIon Channel GatingKnock-outLaser Speckle ImagingLearningMacrophageMeasuresMediatingMembraneMemoryMicrogliaModelingMusMutationPathologyPatientsPerfusionPeripheralPiezo 1 ion channelPublic HealthRegulationRestRoleSignal TransductionStretchingTestingTg2576Up-RegulationVasodilationagedaging brainamyloid pathologyarteriolebehavior testbehavioral studybrain endothelial cellbrain healthcerebral amyloidosiscerebral hypoperfusioncerebrovascularcerebrovascular pathologycognitive performanceendothelial dysfunctiongain of functionhypoperfusionimprovedin vivoloss of functionmouse modelnew therapeutic targetnovelnovel strategiespharmacologicquantitative imagingrecruitresilienceresponsesextherapeutic targettwo-photonwhite matterwhite matter injury
项目摘要
The following proposal is built on our recent novel findings showing a critical role for endothelial Piezo1 in cerebral blood
flow (CBF) regulation and brain health. Piezo1 is a mechanosensitive ion channel that gates Ca2+ and Na+ influx in response
to membrane stretch or increased shear force. In the peripheral vasculature, endothelial Piezo1 is activated by increased
flow/shear and promotes vasodilation through Ca2+-dependent mechanisms. We now provide novel preliminary data
demonstrating that selective loss of endothelial Piezo1 promotes a decrease in resting CBF (hypoperfusion), while
pharmacological activation of endothelial cell (EC) Piezo1 promotes increased CBF (hyperemia). Our data further show
that the consequences of chronic EC Piezo1 loss of function (LOF) include endothelial upregulation of genes associated
with inflammation and microglia/macrophage recruitment (scRNAseq), widespread microgliosis, and development of
white matter injury.
In specific regard to AD/ADRD, beta-amyloid (Ab) peptides (e.g. Ab40, Ab42) have been shown to acutely reduce Piezo1
sensitivity to flow/shear activation. These findings offer the intriguing possibility that conditions of amyloidosis may impair
EC Piezo1-mediated CBF regulation. Our preliminary data support this possibility, as we show progressive impairment of
EC Piezo1-dependent hyperemia in pre-symptomatic and symptomatic TgAPP mice. Additionally, by analyzing public
snRNAseq data from AD and cognitively normal patients, we found a transcriptional signature consistent with reduced
flow- and Piezo1-dependent signaling in EC from brain of AD patients. Together, these data suggest that EC Piezo1 is vital
for normal CBF regulation and that the dysfunction of EC Piezo1 can exacerbate cerebral hypoperfusion and worsen age
and Ab-driven pathology.
In the proposed project, we will define how EC Piezo1 LOF contributes to cerebrovascular pathology in aging and
amyloidosis and explore the novel strategy of EC Piezo1 gain of function (GOF) as an ameliorative solution. Our overall
hypothesis is that EC Piezo1 LOF potentiates aging and Ab-mediated pathology and that EC Piezo1 GOF can restore
cerebrovascular function and provide resilience to aging and Ab-mediated cognitive decline. Aim 1 will define how brain-
specific EC Piezo1 LOF leads to brain pathology in mouse models of aging and amyloidosis. We will use two TgAPP mouse
lines that model different aspects of amyloidosis (Tg2576 and TgSwDI). Aim 2 will leverage the ability to enhance CBF via
EC Piezo1 GOF to restore CBF regulation, provide cerebrovascular resilience, and slow progression of aging and Ab-related
brain pathology and cognitive decline in mouse models of aging and amyloidosis. We will induce Piezo1 GOF selectively in
brain endothelium of young and aged WT mice and in TgAPP mice at pre-symptomatic and symptomatic stages.
Completion of Aims 1 and 2 will employ a combination of in vivo measures of CBF and cerebrovascular function, measures
of EC Piezo1 channel function, 3D quantitative imaging of white matter tracts, brain and vascular immuno/histochemical
analyses, and behavior studies. All studies will be performed in both sexes. If successful, these studies will establish EC
Piezo1 as a valuable therapeutic target for enhancing brain perfusion and reducing cognitive decline.
以下建议基于我们最近的新发现,显示内皮 Piezo1 在脑血中的关键作用
流量(CBF)调节和大脑健康。 Piezo1 是一种机械敏感离子通道,可响应响应而控制 Ca2+ 和 Na+ 的流入
膜拉伸或增加剪切力。在外周血管系统中,内皮 Piezo1 被激活
流动/剪切并通过 Ca2+ 依赖性机制促进血管舒张。我们现在提供新颖的初步数据
证明内皮 Piezo1 的选择性丧失会促进静息 CBF 的减少(灌注不足),而
内皮细胞 (EC) Piezo1 的药理激活可促进 CBF 增加(充血)。我们的数据进一步显示
慢性 EC Piezo1 功能丧失 (LOF) 的后果包括相关基因的内皮上调
炎症和小胶质细胞/巨噬细胞募集 (scRNAseq)、广泛的小胶质细胞增生和
白质损伤。
特别是对于 AD/ADRD,β-淀粉样蛋白 (Ab) 肽(例如 Ab40、Ab42)已被证明可以急剧降低 Piezo1
对流动/剪切激活的敏感性。这些发现提供了一个有趣的可能性,即淀粉样变性可能会损害
EC Piezo1 介导的 CBF 调节。我们的初步数据支持这种可能性,因为我们显示
症状前和症状 TgAPP 小鼠中 EC Piezo1 依赖性充血。此外,通过分析公众
来自 AD 和认知正常患者的 snRNAseq 数据,我们发现了与减少的转录特征一致的转录特征
AD 患者大脑中 EC 中的流和压电 1 依赖性信号传导。总之,这些数据表明 EC Piezo1 至关重要
正常的 CBF 调节和 EC Piezo1 的功能障碍会加剧脑灌注不足并恶化年龄
和抗体驱动的病理学。
在拟议的项目中,我们将定义 EC Piezo1 LOF 如何对衰老和衰老过程中的脑血管病理学做出贡献
淀粉样变性并探索 EC Piezo1 功能增益 (GOF) 作为改善解决方案的新策略。我们的整体
假设 EC Piezo1 LOF 会增强衰老和 Ab 介导的病理,而 EC Piezo1 GOF 可以恢复
脑血管功能并提供抵抗衰老和抗体介导的认知衰退的能力。目标 1 将定义大脑如何
特定的 EC Piezo1 LOF 会导致衰老和淀粉样变性小鼠模型中的脑部病理学变化。我们将使用两个 TgAPP 鼠标
模拟淀粉样变性不同方面的细胞系(Tg2576 和 TgSwDI)。目标 2 将利用增强 CBF 的能力
EC Piezo1 GOF 可恢复 CBF 调节,提供脑血管弹性,并减缓衰老和抗体相关的进展
衰老和淀粉样变性小鼠模型的脑病理学和认知能力下降。我们将选择性诱导 Piezo1 GOF
年轻和老年 WT 小鼠以及 TgAPP 小鼠在症状前和症状阶段的脑内皮。
完成目标 1 和 2 将采用 CBF 和脑血管功能的体内测量相结合,测量
EC Piezo1 通道功能、白质束 3D 定量成像、脑和血管免疫/组织化学
分析和行为研究。所有研究都将在男女中进行。如果成功,这些研究将建立 EC
Piezo1 作为增强大脑灌注和减少认知能力下降的重要治疗靶点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sean P Marrelli其他文献
Sean P Marrelli的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sean P Marrelli', 18)}}的其他基金
Targeting intramural von Willebrand factor (VWF) to improve vasomotor function, enhance brain parenchymal clearance, & delay development of cerebral amyloid angiopathy (CAA) in conditions of amyloid
针对壁内血管性血友病因子 (VWF) 改善血管舒缩功能,增强脑实质清除,
- 批准号:
10901009 - 财政年份:2023
- 资助金额:
$ 62.39万 - 项目类别:
SkyScan 1276: Multiscale Micro-CT SystemLaboratory
SkyScan 1276:多尺度微型 CT 系统实验室
- 批准号:
10177395 - 财政年份:2021
- 资助金额:
$ 62.39万 - 项目类别:
Defining the role of endothelial Piezo1, a mechanosensitive ion channel, in providing resilience to vascular contributions to cognitive impairment and dementia (VCID)
定义内皮 Piezo1(一种机械敏感离子通道)在为认知障碍和痴呆 (VCID) 的血管提供恢复能力方面的作用
- 批准号:
10419669 - 财政年份:2021
- 资助金额:
$ 62.39万 - 项目类别:
G-quadruplex DNA in senescence of the neurovascular unit
神经血管单元衰老中的 G-四链体 DNA
- 批准号:
10044252 - 财政年份:2020
- 资助金额:
$ 62.39万 - 项目类别:
Multiple mechanisms of TRPV1-mediated brain protection following stroke
TRPV1介导的中风后脑保护的多种机制
- 批准号:
9236509 - 财政年份:2017
- 资助金额:
$ 62.39万 - 项目类别:
Multiple mechanisms of TRPV1-mediated brain protection following stroke
TRPV1介导的中风后脑保护的多种机制
- 批准号:
9551722 - 财政年份:2017
- 资助金额:
$ 62.39万 - 项目类别:
TRPV1-mediated induction of a protective heat shock response after stroke
TRPV1 介导的中风后保护性热休克反应的诱导
- 批准号:
8807397 - 财政年份:2014
- 资助金额:
$ 62.39万 - 项目类别:
TRPV1-mediated induction of a protective heat shock response after stroke
TRPV1 介导的中风后保护性热休克反应的诱导
- 批准号:
8919475 - 财政年份:2014
- 资助金额:
$ 62.39万 - 项目类别:
Targeting thermoreceptors for therapeutic hypothermia
靶向温度感受器进行低温治疗
- 批准号:
8327106 - 财政年份:2011
- 资助金额:
$ 62.39万 - 项目类别:
Targeting thermoreceptors for therapeutic hypothermia
靶向温度感受器进行低温治疗
- 批准号:
8233629 - 财政年份:2011
- 资助金额:
$ 62.39万 - 项目类别:
相似国自然基金
高功率激光驱动低β磁重联中磁岛对电子加速影响的研究
- 批准号:12305275
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
U型离散顺流火蔓延非稳态热输运机理与加速机制研究
- 批准号:52308532
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
实施科学视角下食管癌加速康复外科证据转化障碍机制与多元靶向干预策略研究
- 批准号:82303925
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
TWIST1介导的ITGBL1+肿瘤相关成纤维细胞转化加速结肠癌动态演化进程机制及其预防干预研究
- 批准号:82373112
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
NOTCH3/HLF信号轴驱动平滑肌细胞表型转化加速半月板退变的机制研究
- 批准号:82372435
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Commercial translation of high-density carbon fiber electrode arrays for multi-modal analysis of neural microcircuits
用于神经微电路多模态分析的高密度碳纤维电极阵列的商业转化
- 批准号:
10761217 - 财政年份:2023
- 资助金额:
$ 62.39万 - 项目类别:
Selective Radionuclide Delivery for Precise Bone Marrow Niche Alterations
选择性放射性核素输送以实现精确的骨髓生态位改变
- 批准号:
10727237 - 财政年份:2023
- 资助金额:
$ 62.39万 - 项目类别:
Characterizing chemical threat agent exposures using a lung-on-a-chip platform and multi-omic analysis of common pathophysiological mechanisms
使用芯片肺平台和常见病理生理机制的多组学分析来表征化学威胁剂暴露
- 批准号:
10708553 - 财政年份:2023
- 资助金额:
$ 62.39万 - 项目类别:
Bridging the gap: joint modeling of single-cell 1D and 3D genomics
弥合差距:单细胞 1D 和 3D 基因组学联合建模
- 批准号:
10572539 - 财政年份:2023
- 资助金额:
$ 62.39万 - 项目类别:
Investigating cerebrovascular dysfunction and cerebral atrophy in severe traumatic brain injury
严重颅脑损伤中脑血管功能障碍和脑萎缩的调查
- 批准号:
10742569 - 财政年份:2023
- 资助金额:
$ 62.39万 - 项目类别: