In vivo analysis of mechanotransduction
力转导的体内分析
基本信息
- 批准号:10456813
- 负责人:
- 金额:$ 33.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:4D ImagingAddressAsthmaBiochemicalBiologicalBiophysicsBiosensorBlood VesselsCaenorhabditis elegansCalciumCell ShapeCellsCellular biologyCommunicationComputer ModelsContractile SystemContractsCyclic AMP-Dependent Protein KinasesEmbryoEngineeringGTP-Binding Protein alpha SubunitsGTP-Binding Protein alpha Subunits, GsGap JunctionsGenetic ModelsHeart DiseasesHeterotrimeric GTP-Binding ProteinsHypertensionImageIndividualKnowledgeLifeLinkLungMammary glandMeasuresMechanicsModelingMolecular GeneticsNematodaOocytesPhospholipidsPhysiologic pulseProcessProteomicsRegulationReproducibilityReproductive systemResearchRoleSalivary GlandsSignal TransductionSmooth MuscleStretchingStructureSystemTestingTimeTissuesTranslatingTubeTubular formationUrineUterusWorkautomated image analysiscell typecomputerized toolsfilamingene networkgenetic manipulationin vivoin vivo Modelinsightlymphatic vesselmechanical signalmechanotransductionnovelpressurereproductive tractresponserho GTPase-activating proteinspatiotemporal
项目摘要
In vivo analysis of mechanotransduction
Cells in biological tubes must integrate biochemical and mechanical cues in order to expand or
contract in a coordinated manner. Inappropriate responses to changing states underlie
conditions such as heart disease, hypertension and asthma. Despite insights from biophysics
and from cell biology on engineered substrates, many important questions remain regarding
how mechanical information is sensed by cells, translated into biochemical signals, and
integrated to produce a coordinated tissue-level response. For example, how is multicellular
contractility regulated in space and time? How are the induction and propagation of biochemical
signals regulated by mechanical cues? How do different cell types within a tissue coordinate
their actions? To address these questions, we have developed an in vivo model, the C. elegans
spermatheca, which is a tubular tissue in the nematode reproductive system comprised of 24
smooth-muscle-like cells that connect to the uterus via a toroidal valve. The major advantages
of this system are that the cells are naturally stretched and contract as oocytes enter, and are
amenable to quantitative live imaging and targeted genetic manipulation, enabling observation
and manipulation of individual cells in the context of an intact tissue. We have discovered that
oocyte entry induces Ca2+ pulses that sweep across the tissue, culminating in a coordinated
contraction that pushes the fertilized embryo into the uterus. Ca2+ release and contractility in the
spermatheca and valve are coordinated such that while the spermathecal bag contracts, the
valve dilates to allow exit of the fertilized embryo. Well-conserved gene networks regulate these
processes, suggesting broad applicability of our findings to other contractile systems. Here, we
propose a combination of 4D imaging of genetically-encoded biosensors, proteomics, molecular
genetics, and modeling to elucidate the mechanisms which coordinate Ca2+ signaling in
response to stretch. Specifically, we will 1) test the hypothesis that the heterotrimeric G protein,
Gαs, signals through PKA to regulate spermathecal contractility; 2) model the mechanisms by
which stretch triggers calcium release and signal propagation; and 3) determine how valve
contractility is regulated, both autonomously and via communication from the spermathecal bag.
This research will lead to important advances in our understanding of the fundamental
mechanisms by which cells convert mechanical information into biochemical signals, and how
this signaling is integrated to regulate tissue function.
机械转移的体内分析
生物管中的细胞必须整合生化和机械提示,以扩展或
以协调的方式收缩。对不断变化的国家的不适当回应是基础
心脏病,高血压和哮喘等疾病。尽管有生物物理学的见解
从工程基质的细胞生物学中,关于
细胞如何感知机械信息,转化为生化信号,并
集成以产生协调的组织级反应。例如,多细胞如何
收缩性在时间和时间上受到监管?生化的诱导和传播如何
机械提示调节的信号?组织坐标中的不同细胞类型如何
他们的行动?为了解决这些问题,我们已经开发了一种体内模型,即秀丽隐杆线虫
精子,它是线虫复制系统中的一个管状组织,已完成24
光滑肌肉样细胞通过环形阀连接到子宫。主要优势
该系统的是,当卵母细胞进入时,细胞是自然拉伸的,并且是收缩的,并且是
适合定量实时成像和靶向遗传操作,使观察能够观察
并在完整组织的背景下操纵单个细胞。我们发现
卵母细胞进入诱导Ca2+脉冲扫过组织,并在协调中
收缩将受精的胚胎推入子宫。 CA2+释放和收缩性
精子和瓣膜是协调的,使精子袋合同时,
瓣膜扩张以允许施肥的胚胎退出。保存良好的基因网络调节这些
过程,表明我们的发现对其他收缩系统的广泛适用性。在这里,我们
提案的遗传编码生物传感器,蛋白质组学,分子的4D成像组合
遗传学和建模以阐明协调Ca2+信号传导的机制
对拉伸的响应。具体而言,我们将1)检验以下假设:异三聚体G蛋白,
GαS,通过PKA信号调节精子收缩力; 2)通过
拉伸会触发钙释放和信号传播; 3)确定阀门如何
自主和通过精子袋的通信进行了监管。
这项研究将导致我们对基本的理解的重要进展
细胞通过将机械信息转换为生化信号的机制,以及如何
该信号被整合以调节组织功能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Erin Jean Cram其他文献
Erin Jean Cram的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Erin Jean Cram', 18)}}的其他基金
Characterization of a novel regulator of cell migration
新型细胞迁移调节剂的表征
- 批准号:
8306781 - 财政年份:2008
- 资助金额:
$ 33.46万 - 项目类别:
Characterization of a novel regulator of cell migration
新型细胞迁移调节剂的表征
- 批准号:
7797845 - 财政年份:2008
- 资助金额:
$ 33.46万 - 项目类别:
Characterization of a novel regulator of cell migration
新型细胞迁移调节剂的表征
- 批准号:
8114984 - 财政年份:2008
- 资助金额:
$ 33.46万 - 项目类别:
Characterization of a novel regulator of cell migration
新型细胞迁移调节剂的表征
- 批准号:
7666910 - 财政年份:2008
- 资助金额:
$ 33.46万 - 项目类别:
Characterization of a novel regulator of cell migration
新型细胞迁移调节剂的表征
- 批准号:
7903147 - 财政年份:2008
- 资助金额:
$ 33.46万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A Novel Approach to Target Neutrophilic Airway Inflammation and Airway Hyperresponsiveness in Therapy-Resistant (Refractory) Asthma.
一种针对难治性哮喘中性粒细胞性气道炎症和气道高反应性的新方法。
- 批准号:
10659658 - 财政年份:2023
- 资助金额:
$ 33.46万 - 项目类别:
Treating Maternal Depression in an Urban Community-Based Pediatric Asthma Clinic: Targeting Maternal Mood, Child Asthma Outcomes, and Health Disparities
在城市社区小儿哮喘诊所治疗孕产妇抑郁症:针对孕产妇情绪、儿童哮喘结果和健康差异
- 批准号:
10723233 - 财政年份:2023
- 资助金额:
$ 33.46万 - 项目类别:
Impact of benzene-induced MIA on fetal T cell development
苯诱导的 MIA 对胎儿 T 细胞发育的影响
- 批准号:
10605881 - 财政年份:2023
- 资助金额:
$ 33.46万 - 项目类别:
A Low-Cost Wearable Connected Health Device for Monitoring Environmental Pollution Triggers of Asthma in Communities with Health Disparities
一种低成本可穿戴互联健康设备,用于监测健康差异社区中哮喘的环境污染诱因
- 批准号:
10601615 - 财政年份:2023
- 资助金额:
$ 33.46万 - 项目类别:
The Causal Impact of Poverty Reduction on Housing Conditions of Low-Income, U.S. Children and the Role of Housing and Neighborhood Ecosystems on Young Children's Healthy Development
减贫对美国低收入儿童住房条件的因果影响以及住房和邻里生态系统对幼儿健康发展的作用
- 批准号:
10678527 - 财政年份:2023
- 资助金额:
$ 33.46万 - 项目类别: