LA’s Biostatistics and Data Science Training Program (LA’s BeST)
洛杉矶生物统计学和数据科学培训计划 (LAâs BeST)
基本信息
- 批准号:10368449
- 负责人:
- 金额:$ 25.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAddressAlaskaAlaskanAmerican IndiansArtificial IntelligenceAutomobile DrivingBachelor&aposs DegreeBig DataBiomedical ResearchBiometryBlack raceCaliforniaChronicClinicalClinical TrialsCollaborationsComputersComputing MethodologiesConsciousDataData ScienceData ScientistDevelopmentDiagnosticDisciplineDiverse WorkforceEducationEducational CurriculumEducational StatusEducational process of instructingEducational workshopElectronic Health RecordEmploymentEnrollmentEpidemiologic MethodsEpidemiologyFacultyFamilyFelis catusFemaleFundingGenerationsGeneticGenomicsGoalsGrowthHealthHeart DiseasesHistorically Black Colleges and UniversitiesIndividualInterdisciplinary StudyInterviewJapanese AmericanLatinoLatinxLeadLeadershipLearningLifeLocationLung diseasesMachine LearningMentorsMentorshipMonitorNational Heart, Lung, and Blood InstituteNational Institute of Environmental Health SciencesOralPlayPopulationPopulation HeterogeneityPositioning AttributePreventionPreventive MedicineResearchResearch DesignResearch Project GrantsRoleSchoolsScientistStatistical MethodsStudentsSystemTalentsTimeTrainingTraining ProgramsUnderrepresented PopulationsUnderrepresented StudentsUnited States National Institutes of HealthUniversitiesWomanWritingbuilt environmentcareercollegeethnic diversityfaculty mentorfollow-upgraduate school preparationgraduate studenthands on researchhealth datahealth disparityholistic approachinterdisciplinary approachjob marketlecturesmedical specialtiesmindfulnessmultidisciplinarynovelpostgraduate educationprofessional atmosphereprogramsprospectiverecruitsensorskillsstatisticsstudent mentoringsuccesssummer researchunconscious biasundergraduate studentworking group
项目摘要
ABSTRACT
Health disparities in our nation are acute, increasing, and known to be caused by many factors. A multi-
faceted approach by multi-disciplinary teams of scientists is needed to properly tackle this chronic and
growing problem. Increasing the diversity of biomedical research scientists is one key strategy to
address this crisis. With the current deluge of health-related data and a projected 34% growth in the
job market for statisticians from 2019 to 2029 (Bureau of Labor Statistics), now is the time to diversify
our workforce in the specialties of biostatistics and data science. Herein, we plan to expand the pool of
students from underrepresented groups in these disciplines by introducing a new curriculum for
teaching critical skills in biostatistics and data science, LA’s Biostatistics and Data Science Summer
Training Program at the University of Southern California (LA’s BeST @USC), with a focus on current
research challenges in the study of heart and lung disease.
The Division of Biostatistics in the Department of Preventive Medicine of the University of
Southern California (USC) is uniquely positioned to attract talented undergraduates from
underrepresented groups into these fields due to its success in graduate level training since 1976, its
location in the ethnically diverse LA Basin, its multi-disciplinary research in diverse populations, and
real-life oriented approach to biomedical research. The faculty has expertise in ‘big data’, machine
learning, epidemiological methods, spatial statistics and clinical trials, and has an NIH-funded P01 to
develop novel statistical methods for integrative genomics. Training a diverse workforce of scientists
requires a diverse faculty. A team of faculty from backgrounds including women, Latinx, Japanese
American, and first in their family to attain a college education, who all share a tradition of individual
hands-on research mentorship and extensive portfolios of research grant support in biostatistics,
epidemiology, clinical trials, and electronic health records, is amassed and available to trainees. With
this team, we propose the following specific aims: 1) To identify and recruit high-quality and highly
motivated college undergraduate students from underrepresented groups. 2) To provide the trainees
with courses and hands-on training in biostatistics and data science. 3) To provide mentoring and
professional development training. 4) To track LA’s BeST trainees through completion of their
undergraduate degree, post-graduate education, and to their first employment.
抽象的
我们国家的健康差距日益严重,并且是由多种因素造成的。
需要多学科科学家团队采取多方面的方法来妥善解决这一长期存在的问题
增加生物医学研究科学家的多样性是解决这个问题的关键策略之一。
面对当前与健康相关的大量数据以及预计将增长 34% 的数据,应对这一危机。
2019年至2029年统计学家的就业市场(劳工统计局),现在是多元化的时候了
我们计划扩大生物统计学和数据科学专业的人才队伍。
通过引入新课程,吸引来自这些学科中代表性不足群体的学生
洛杉矶生物统计学和数据科学暑期课程教授生物统计学和数据科学的关键技能
南加州大学 (LA’s BeST @USC) 的培训计划,重点关注当前
心脏和肺部疾病研究中的研究挑战。
中国人民大学预防医学系生物统计学教研室
南加州 (USC) 具有独特的优势,能够吸引来自以下国家的优秀本科生
由于自 1976 年以来在研究生水平培训方面取得的成功,进入这些领域的群体代表性不足,
位于种族多元化的洛杉矶盆地,其对不同人群的多学科研究,以及
该教师拥有“大数据”、机器方面的专业知识。
学习、流行病学方法、空间统计和临床试验,并拥有 NIH 资助的 P01
开发用于综合基因组学的新颖统计方法,培训多元化的科学家队伍。
需要一支多元化的教师团队,其背景包括女性、拉丁裔、日本人。
美国人,是家族中第一个接受大学教育的人,他们都有个人的传统
生物统计学领域的实践研究指导和广泛的研究资助支持,
流行病学、临床试验和电子健康记录已积累并可供学员使用。
对于这个团队,我们提出以下具体目标: 1)识别和招募高素质、高素质的人才
2) 提供受训人员。
提供生物统计学和数据科学方面的课程和实践培训 3) 提供指导和指导。
4) 跟踪洛杉矶 BeST 学员完成培训的情况。
本科学位、研究生教育以及第一次就业。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Juan Pablo Lewinger其他文献
Juan Pablo Lewinger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Juan Pablo Lewinger', 18)}}的其他基金
LA’s Biostatistics and Data Science Training Program (LA’s BeST)
洛杉矶生物统计学和数据科学培训计划 (LAâs BeST)
- 批准号:
10590701 - 财政年份:2022
- 资助金额:
$ 25.28万 - 项目类别:
LA’s Biostatistics Education Summer Training Program (LA’s BEST @USC)
洛杉矶生物统计教育暑期培训计划(洛杉矶 BEST @USC)
- 批准号:
9894852 - 财政年份:2019
- 资助金额:
$ 25.28万 - 项目类别:
Integrated Analysis for Genetic Association and Prediction
遗传关联与预测的综合分析
- 批准号:
9768384 - 财政年份:
- 资助金额:
$ 25.28万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Mentored research in the intersection of kidney and cardiovascular disease
肾脏和心血管疾病交叉领域的指导研究
- 批准号:
10795588 - 财政年份:2023
- 资助金额:
$ 25.28万 - 项目类别:
Machine Learning Models of Appropriate Medevac Utilization in Rural Alaska
阿拉斯加农村地区适当使用医疗后送的机器学习模型
- 批准号:
10448027 - 财政年份:2022
- 资助金额:
$ 25.28万 - 项目类别:
Machine Learning Models of Appropriate Medevac Utilization in Rural Alaska
阿拉斯加农村地区适当使用医疗后送的机器学习模型
- 批准号:
10653776 - 财政年份:2022
- 资助金额:
$ 25.28万 - 项目类别:
Colorado Preparation in Interdisciplinary Knowledge to Excel PREP
科罗拉多州跨学科知识准备至 Excel PREP
- 批准号:
10344884 - 财政年份:2022
- 资助金额:
$ 25.28万 - 项目类别: