Machine Learning Models of Appropriate Medevac Utilization in Rural Alaska
阿拉斯加农村地区适当使用医疗后送的机器学习模型
基本信息
- 批准号:10653776
- 负责人:
- 金额:$ 16.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-26 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAccidentsAcuteAddressAffectAirAlaskaAlaska NativeAlaskanAmericanArtificial IntelligenceAwardBehavioralBenefits and RisksClassificationClinicalCollaborationsCommunitiesDataData ScienceDatabasesDecision MakingDependenceDevelopmentDisparityDisparity populationElectronic Health RecordEmergency CareEmergency MedicineEmergency SituationEpidemiologyEquityExcess MortalityExpenditureFutureGoalsGrantGuidelinesHealthHealth Disparities ResearchImprove AccessInterviewMachine LearningMedicalMedical InformaticsMentorsMentorshipMethodologyModelingNative-BornOutcomePatient-Focused OutcomesPatientsPhysiciansPopulationPublicationsQualitative MethodsQualitative ResearchQuality of CareResearchResearch AssistantResearch PersonnelResearch ProposalsResource-limited settingResourcesRiceRiskRuralSafetyScientistStructureStudentsSurveysSystemTestingTimeTrainingTraining ActivityUnderserved PopulationUniversitiesWorkYukon-Kuskokwim Deltaaccess disparitiesbiomedical informaticscare deliverycareerclinical careclinical decision-makingcomputer programcostdata managementempowermentevidence baseexpectationexperienceglobal healthhealth disparityimprovedinformantinnovationlearning strategymachine learning classificationmachine learning methodmachine learning modelmodel buildingmortalitynoveloutcome disparitiesprofessorrural Alaskarural Americansrural areaskillsstakeholder perspectivesstatisticstoolurban area
项目摘要
PROJECT SUMMARY / ABSTRACT
The purpose of this award is to provide Dr. Brian Rice, Assistant Professor of Emergency Medicine at Stanford
University, the support necessary for his transition from a junior investigator into an independent clinician-
scientist using applied biomedical informatics to address health disparities. Dr. Rice is an emergency medicine
physician with an advanced degree in epidemiology and global health, and a background in computer
programming and artificial intelligence. His long-term goal is to utilize his interdisciplinary training to develop
and implement machine learning tools to empower precise, high-value clinical decision-making surrounding
emergency care and transport in historically disadvantaged populations. His training activities focus on
advancing his ability to apply biomedical informatics to address health disparities via these training objectives:
1) expanding his skills in data management and computational statistics 2) learning methods for community-
engaged and participatory approaches to health disparities research, and 3) acquiring new skills machine
learning and classification model building. The candidate has convened a mentorship team that includes Dr.
Tina Hernandez-Boussard, a biomedical artificial intelligence expert with a focus on improving transparency
and minimizing bias in machine learning models to make them more equitable and generalizable, and Dr.
Stacy Rasmus, a leading Alaska Native behavioral scientist with extensive experience successfully conducting
community-engaged qualitative research in rural Alaska. The research proposal builds off the candidate’s prior
work with air medical evacuation (medevacs) in rural Alaska which established the central hypothesis that
medevacs can be classified as appropriate or inappropriate by machine learning models built on outcome data
and enriched by qualitative methods. This central hypothesis will be tested by the following specific aims: 1)
define the burden and outcomes of medevacs in rural Alaska; 2) identify key context-specific contributors to
medevac utilization in rural Alaska; and 3) develop machine learning models to classify appropriateness of
medevac utilization in rural Alaska. The research proposed in this application is innovative because it employs
accepted methods of machine learning classification modelling and applies them to novel fields of medevac
and Alaska Native health disparities. The significance of the proposed training grant is it will provide the data
and the skills required for Dr. Rice to subsequently study the implementation of these models as a decision tool
in a future R01-level application. Ultimately, this continuum of research has the potential to decrease expenses
and improve safety by redirecting medevac resources towards patients whose time-sensitive conditions benefit
from medevacs and away from patients that incur risk and cost without benefit, both in Alaska Native
communities in rural Alaska and for all Americans living in rural regions nationwide.
项目摘要 /摘要
该奖项的目的是为斯坦福大学急诊医学助理教授Brian Rice博士提供
大学,从初级调查员过渡到独立临床 -
科学家使用应用生物医学信息来解决健康分布。赖斯博士是急诊药
物理学具有流行病学和全球健康的高级学位,计算机背景
编程和人工智能。他的长期目标是利用他的跨学科培训来发展
并实施机器学习工具,以增强围绕围绕的精确,高价值的临床决策
历史上处于弱势群体的急诊和运输。他的培训活动的重点
推进他通过这些培训目标应用生物医学信息来解决健康分配的能力:
1)扩大他在数据管理和计算统计方面的技能2)社区学习方法 -
参与和参与健康差异研究的方法,以及3)获取新技能机器
学习和分类模型构建。候选人召集了包括Dr.
生物医学人工智能专家蒂娜·埃尔南德斯·布萨德(Tina Hernandez-Boussard)专注于提高透明度
并最大程度地减少机器学习模型中的偏见,以使其更加公平和可推广,并
史黛西·拉斯穆斯(Stacy Rasmus),阿拉斯加领先的本地行为科学家,拥有丰富的经验成功进行
阿拉斯加农村地区的社区参与定性研究。研究提案建立在候选人的先前
与阿拉斯加农村地区的空中医疗疏散(MEDEVAC)一起工作,该假设确定了一个中心假设
可以根据成果数据构建的机器学习模型对MEDEVAC进行适当的分类或不适当的分类
并通过定性方法丰富。该中心假设将通过以下特定目的进行检验:1)
定义阿拉斯加粗糙的Medevacs的燃烧和结果; 2)确定特定于上下文的关键贡献者
阿拉斯加粗糙的Medevac利用; 3)开发机器学习模型以对适当性进行分类
阿拉斯加农村地区的MEDEVAC利用。该应用程序中提出的研究具有创新性,因为IT员工
接受的机器学习分类建模的方法并将其应用于Medevac的新领域
和阿拉斯加本地健康差异。拟议的培训补助金的重要性是它将提供数据
赖斯博士随后将这些模型作为决策工具的实施所需的技能
在未来的R01级应用中。最终,这一继续研究有可能减少支出
并通过将MEDEVAC资源重定向到时间敏感条件受益的患者来提高安全性
来自阿拉斯加本地人
阿拉斯加农村地区和所有居住在全国农村地区的美国人的社区。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brian Travis Rice其他文献
Brian Travis Rice的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brian Travis Rice', 18)}}的其他基金
Machine Learning Models of Appropriate Medevac Utilization in Rural Alaska
阿拉斯加农村地区适当使用医疗后送的机器学习模型
- 批准号:
10448027 - 财政年份:2022
- 资助金额:
$ 16.63万 - 项目类别:
相似国自然基金
多入口下穿隧道合流区域交通事故演化机理与自解释调控方法
- 批准号:52302437
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
源于随机行人碰撞事故边界反求的头部损伤评价准则及风险预测
- 批准号:52372348
- 批准年份:2023
- 资助金额:54 万元
- 项目类别:面上项目
面向救援与疏散的危化品储运灾害事故情景推演与应急态势评估方法
- 批准号:52374208
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
聚变堆真空室内失水事故射流闪蒸特性研究
- 批准号:12305183
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
燃料样品辐照流道堵塞事故演化机理及全堆响应研究
- 批准号:12375178
- 批准年份:2023
- 资助金额:52.00 万元
- 项目类别:面上项目
相似海外基金
Novel behavioral screening tool for therapeutics against organophosphorus agents
用于有机磷药物治疗的新型行为筛选工具
- 批准号:
10631009 - 财政年份:2023
- 资助金额:
$ 16.63万 - 项目类别:
New statistical and computational tools for optimization of planarian behavioral chemical screens
用于优化涡虫行为化学筛选的新统计和计算工具
- 批准号:
10658688 - 财政年份:2023
- 资助金额:
$ 16.63万 - 项目类别:
IND-enabling development of Radioprotectin 1: a dual GI/HE radiation mitigator
Radioprotectin 1 的 IND 开发:双重 GI/HE 辐射缓解剂
- 批准号:
10794519 - 财政年份:2023
- 资助金额:
$ 16.63万 - 项目类别:
Metabolic impairment plays a critical role in radiation-induced T cell immune dysfunction
代谢损伤在辐射诱导的 T 细胞免疫功能障碍中起着关键作用
- 批准号:
10474738 - 财政年份:2022
- 资助金额:
$ 16.63万 - 项目类别:
Optimization of Bile Sequestrants to Treat Superwarfarin Poisoning
治疗超级华法林中毒的胆汁螯合剂的优化
- 批准号:
10707127 - 财政年份:2022
- 资助金额:
$ 16.63万 - 项目类别: