Mechanistic dissection of a novel meiotic exit regulation by autophagy
自噬新型减数分裂退出调节的机制剖析
基本信息
- 批准号:10357891
- 负责人:
- 金额:$ 34.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:AcuteAddressAgingAlzheimer&aposs DiseaseAmyloidAmyloid beta-ProteinAutophagocytosisBasic ScienceBindingBiochemicalBiochemistryBiological ModelsCell DeathCell divisionCellsCentrosomeChromosome SegregationCongenital chromosomal diseaseCoupledCyclinsCytokinesisDefectDevelopmentDiploidyDiseaseDissectionDown SyndromeEventFeedbackFrequenciesGametogenesisGene ExpressionGene TargetingGenesGeneticGenetic TranscriptionGerm CellsGoalsGrantHaploidyHumanLaboratoriesLeadLifeLightLinkMass Spectrum AnalysisMaternal Messenger RNAMediatingMeiosisMembraneMembrane ProteinsMessenger RNAMolecularMutagenesisNerve DegenerationNeuronsNewborn InfantPathway interactionsPersonal CommunicationPhenotypePhosphorylationPhosphotransferasesPlayPrevention strategyProcessProductionProteinsProteolysisRNA BindingRNA-Binding ProteinsRegulationReportingRepressionRoleSNAP receptorSaccharomyces cerevisiaeSaccharomycetalesScienceSet proteinSexual ReproductionSister ChromatidStructureSurfaceSystemTherapeuticTranslationsTurner&aposs SyndromeUbiquitinUniversitiesWorkYeastscellular imagingdesigngirlsimaging approachimprovedinhibition of autophagymembrane biogenesismulticatalytic endopeptidase complexmutantnovelnuclear divisionprematurepreventprogramsribosome profilingsegregationspindle pole bodystem cells
项目摘要
PROJECT SUMMARY
Targeted proteolysis is essential for regulating meiosis, the specialized program that produces haploid
gametes from diploid progenitor cells. Although the role of the ubiquitin/proteasome system in meiosis has
been well-described, the potential of autophagy to mediate distinct steps during the meiotic divisions
remains unexplored.
My laboratory recently made the novel discovery that autophagy, a conserved pathway to lysosomal
degradation, is essential for faithful meiotic chromosome segregation and meiosis completion in budding
yeast. We further identified a major target of this meiotic autophagy activity — Rim4, a meiosis-specific RNA
binding protein (RBP) that adapts an amyloid-like state and sequesters mRNAs encoding specific proteins
involved in meiotic regulation, chromosome segregation and sporulation (cytokinesis). Importantly, during
meiotic and early embryotic cell development, gene expression is primarily regulated post-transcriptionally
using maternal mRNAs that are selectively bound by RBPs. The temporal translation of meiotic proteins,
which control meiotic cell progression, is regulated by these RBPs through largely unknown and varied
mechanisms [10]. Our finding reveals a novel link between autophagy and meiotic translation. In
addition, we discovered that autophagy degrades a set of proteins that are associated with spindle pole body
(SPB, the yeast centrosome) structure and function, which is essential for both meiosis and sporulation. We
propose that autophagic degradation of specific proteins, e.g. Rim4 amyloid-like aggregates, Spc42
and Spo74, at multiple meiotic stages contributes to meiosis-programed translational control and
meiosis-coupled SPB dynamics. These novel roles of selective autophagy converge to coordinate meiosis
and sporulation.
The major goals of this proposal are (1) to mechanistically dissect how autophagy regulates Rim4
degradation and what effects this has on meiotic gene expression of Rim4 mRNA targets; and (2) to reveal the
role of meiotic autophagy in restraining the number of SPB per cell. Such understanding will reveal new principles
underlying mRNA-specific translational control and meiotic regulation and, if autophagy is involved in human
meiosis as well, inform strategies for prevention of chromosomal disorders, e.g. Turner syndrome (monosomy
X, frequency: 1/2,500 newborn girls) [11] and Down syndrome (trisomy 21, frequency: 1/800 newborns) [12].
This study will also shed light on the design of therapeutics to clear deleterious amyloid-like aggregates
associated with neurodegeneration (e.g. amyloid beta in Alzheimer’s disease). This grant proposes to: (1)
Elucidate how autophagy promotes Rim4 degradation to regulate meiotic translation; and (2) Investigate
how autophagy regulates yeast centrosome dynamics during meiosis.
项目概要
靶向蛋白水解对于调节减数分裂至关重要,减数分裂是产生单倍体的专门程序
尽管泛素/蛋白酶体系统在减数分裂中的作用已经从二倍体祖细胞中产生。
已被充分描述,自噬在减数分裂过程中介导不同步骤的潜力
仍未被探索。
我的实验室最近有了一个新发现,即自噬是溶酶体的保守途径
降解,对于出芽时忠实的减数分裂染色体分离和减数分裂完成至关重要
我们进一步确定了这种减数分裂自噬活性的主要靶标——Rim4,一种减数分裂特异性 RNA。
结合蛋白 (RBP),适应淀粉样蛋白样状态并隔离编码特定蛋白的 mRNA
重要的是,参与减数分裂调节、染色体分离和孢子形成(细胞分裂)。
减数分裂和早期胚胎细胞发育中,基因表达主要受转录后调节
使用被 RBP 选择性结合的母体 mRNA 减数分裂蛋白的时间翻译,
控制减数分裂细胞进展的 RBP 通过很大程度上未知和多样的方式进行调节
机制[10]。我们的发现揭示了自噬和减数分裂翻译之间的新联系。
此外,我们发现自噬会降解一组与纺锤体极体相关的蛋白质
(SPB,酵母中心体)的结构和功能,对于减数分裂和孢子形成至关重要。
提出特定蛋白质的自噬降解,例如 Rim4 淀粉样蛋白样聚集体、Spc42
和 Spo74,在多个减数分裂阶段有助于减数分裂程序化的翻译控制和
减数分裂耦合的 SPB 动力学。选择性自噬的这些新作用集中在协调减数分裂上。
和孢子形成。
该提案的主要目标是(1)机械地剖析自噬如何调节 Rim4
降解及其对 Rim4 mRNA 靶标减数分裂基因表达的影响;以及 (2) 揭示
减数分裂自噬在抑制每个细胞 SPB 数量方面的作用将揭示新原理。
潜在的 mRNA 特异性翻译控制和减数分裂调节,如果自噬参与人类
减数分裂也为预防染色体疾病(例如特纳综合征)提供了信息。
X,频率:1/2,500 新生儿女孩)[11] 和唐氏综合症(21 三体,频率:1/800 新生儿)[12]。
这项研究还将揭示清除有害的淀粉样蛋白样聚集物的治疗方法的设计
与神经退行性疾病相关(例如阿尔茨海默氏病中的β淀粉样蛋白)。这项资助旨在:(1)
阐明自噬如何促进 Rim4 降解以调节减数分裂翻译;以及 (2) 研究
自噬如何在减数分裂过程中调节酵母中心体动力学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
fei wang其他文献
fei wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('fei wang', 18)}}的其他基金
Mechanistic dissection of a novel meiotic exit regulation by autophagy
自噬新型减数分裂退出调节的机制剖析
- 批准号:
10569656 - 财政年份:2020
- 资助金额:
$ 34.44万 - 项目类别:
Mechanistic dissection of a novel meiotic exit regulation by autophagy
自噬新型减数分裂退出调节的机制剖析
- 批准号:
10116429 - 财政年份:2020
- 资助金额:
$ 34.44万 - 项目类别:
Mechanistic dissection of a novel meiotic exit regulation by autophagy - Equipment Supplement
通过自噬进行新型减数分裂退出调节的机制剖析 - 设备补充
- 批准号:
10796726 - 财政年份:2020
- 资助金额:
$ 34.44万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Immunomodulatory ligand B7-1 targets p75 neurotrophin receptor in neurodegeneration
免疫调节配体 B7-1 在神经变性中靶向 p75 神经营养蛋白受体
- 批准号:
10660332 - 财政年份:2023
- 资助金额:
$ 34.44万 - 项目类别:
Integrative Data Science Approach to Advance Care Coordination of ADRD by Primary Care Providers
综合数据科学方法促进初级保健提供者对 ADRD 的护理协调
- 批准号:
10722568 - 财政年份:2023
- 资助金额:
$ 34.44万 - 项目类别:
Telomerase RNP Prisonbreaks from Phase-Separated Nuclear Body
端粒酶 RNP 从相分离核体中越狱
- 批准号:
10714880 - 财政年份:2023
- 资助金额:
$ 34.44万 - 项目类别:
The Social-Medical Network: Using a Network Approach to Explore the Integration of Informal and Formal Care Networks of Older Adults
社会医疗网络:利用网络方法探索老年人非正式和正式护理网络的整合
- 批准号:
10724756 - 财政年份:2023
- 资助金额:
$ 34.44万 - 项目类别: