Mechanistic dissection of a novel meiotic exit regulation by autophagy
自噬新型减数分裂退出调节的机制剖析
基本信息
- 批准号:10116429
- 负责人:
- 金额:$ 34.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:AcuteAddressAgingAlzheimer&aposs DiseaseAmyloidAmyloid beta-ProteinAutophagocytosisBasic ScienceBindingBiochemicalBiochemistryBiological ModelsCell DeathCell divisionCellsCentrosomeChromosome SegregationCongenital chromosomal diseaseCoupledCyclinsCytokinesisDefectDevelopmentDiploidyDiseaseDissectionDown SyndromeEventFeedbackFrequenciesGametogenesisGene ExpressionGene TargetingGenesGeneticGenetic TranscriptionGerm CellsGoalsGrantHaploidyHumanLaboratoriesLeadLifeLightLinkMass Spectrum AnalysisMaternal Messenger RNAMediatingMeiosisMembraneMembrane ProteinsMessenger RNAMolecularMutagenesisNerve DegenerationNeuronsNewborn InfantPathway interactionsPersonal CommunicationPhenotypePhosphorylationPhosphotransferasesPlayPrevention strategyProcessProductionProteinsProteolysisRNA BindingRNA-Binding ProteinsRegulationReportingRepressionRoleSNAP receptorSaccharomyces cerevisiaeSaccharomycetalesScienceSet proteinSexual ReproductionSister ChromatidStructureSurfaceSystemTherapeuticTranslationsTurner&aposs SyndromeUbiquitinUniversitiesWorkYeastscellular imagingdesigngirlsimaging approachimprovedinhibition of autophagymembrane biogenesismulticatalytic endopeptidase complexmutantnovelnuclear divisionprematurepreventprogramsribosome profilingsegregationspindle pole bodystem cells
项目摘要
PROJECT SUMMARY
Targeted proteolysis is essential for regulating meiosis, the specialized program that produces haploid
gametes from diploid progenitor cells. Although the role of the ubiquitin/proteasome system in meiosis has
been well-described, the potential of autophagy to mediate distinct steps during the meiotic divisions
remains unexplored.
My laboratory recently made the novel discovery that autophagy, a conserved pathway to lysosomal
degradation, is essential for faithful meiotic chromosome segregation and meiosis completion in budding
yeast. We further identified a major target of this meiotic autophagy activity — Rim4, a meiosis-specific RNA
binding protein (RBP) that adapts an amyloid-like state and sequesters mRNAs encoding specific proteins
involved in meiotic regulation, chromosome segregation and sporulation (cytokinesis). Importantly, during
meiotic and early embryotic cell development, gene expression is primarily regulated post-transcriptionally
using maternal mRNAs that are selectively bound by RBPs. The temporal translation of meiotic proteins,
which control meiotic cell progression, is regulated by these RBPs through largely unknown and varied
mechanisms [10]. Our finding reveals a novel link between autophagy and meiotic translation. In
addition, we discovered that autophagy degrades a set of proteins that are associated with spindle pole body
(SPB, the yeast centrosome) structure and function, which is essential for both meiosis and sporulation. We
propose that autophagic degradation of specific proteins, e.g. Rim4 amyloid-like aggregates, Spc42
and Spo74, at multiple meiotic stages contributes to meiosis-programed translational control and
meiosis-coupled SPB dynamics. These novel roles of selective autophagy converge to coordinate meiosis
and sporulation.
The major goals of this proposal are (1) to mechanistically dissect how autophagy regulates Rim4
degradation and what effects this has on meiotic gene expression of Rim4 mRNA targets; and (2) to reveal the
role of meiotic autophagy in restraining the number of SPB per cell. Such understanding will reveal new principles
underlying mRNA-specific translational control and meiotic regulation and, if autophagy is involved in human
meiosis as well, inform strategies for prevention of chromosomal disorders, e.g. Turner syndrome (monosomy
X, frequency: 1/2,500 newborn girls) [11] and Down syndrome (trisomy 21, frequency: 1/800 newborns) [12].
This study will also shed light on the design of therapeutics to clear deleterious amyloid-like aggregates
associated with neurodegeneration (e.g. amyloid beta in Alzheimer’s disease). This grant proposes to: (1)
Elucidate how autophagy promotes Rim4 degradation to regulate meiotic translation; and (2) Investigate
how autophagy regulates yeast centrosome dynamics during meiosis.
项目摘要
靶向蛋白水解对于调节减数分裂至关重要,减数分裂是产生单倍体的专业程序
来自二倍体祖细胞的游戏。尽管泛素/蛋白酶体系统在减数分裂中的作用具有
描述得很好,自噬的潜力在减数分裂划分期间介导了不同的步骤
仍然出乎意料。
我的实验室最近做出了新的发现,即自噬,是通往溶酶体的保守途径
退化,对于忠实的减数分裂染色体隔离和减数分裂的萌芽至关重要
酵母。我们进一步确定了这种减数分裂自噬活性的主要目标-RIM4,一种减数分裂特异性的RNA
结合蛋白(RBP)适应淀粉样蛋白状态并隔离编码特定蛋白的mRNA
参与减数分裂调节,染色体分离和孢子形成(细胞因子)。重要的是,期间
减数分裂和早期胚胎细胞的发育,基因表达在转录后受到主要调节
使用由RBP选择性约束的母体mRNA。减数分裂蛋白的暂时翻译,
哪些控制减数分裂细胞的进展,由这些RBP通过很大的未知和变化来调节
机制[10]。我们的发现揭示了自噬和减数分裂翻译之间的新颖联系。在
此外,我们发现自噬会降解一组与纺锤体身体相关的蛋白质
(SPB,酵母中心体)结构和功能,这对于减数分裂和孢子形成至关重要。我们
提出的特定蛋白质自噬降解,例如RIM4淀粉样蛋白骨料,SPC42
和Spo74,在多个减数分裂阶段有助于减数分裂的翻译控制和
减数分裂耦合的SPB动力学。选择性自噬的这些新作用会融合以协调减数分裂
和孢子形。
该提案的主要目标是(1)机械剖析自噬如何调节RIM4
降解及其对RIM4 mRNA靶标的减数分裂基因表达的影响; (2)揭示
减数分裂自噬在限制每个细胞的SPB数量中的作用。这种理解将揭示新的原则
潜在的mRNA特异性翻译控制和减数分裂调节,如果自噬参与了人类
减数分裂也为预防染色体疾病的策略提供了信息,例如特纳综合征(单色)
X,频率:1/2,500名新生儿)[11]和唐氏综合症(三体疾病,频率:1/800新生儿)[12]。
这项研究还将阐明治疗剂的设计,以清除缺失的淀粉样蛋白骨料
与神经变性有关(例如,阿尔茨海默氏病中的淀粉样蛋白β)。这项赠款提议:(1)
阐明自噬如何促进RIM4降解以调节减数分裂翻译; (2)调查
自噬如何调节减数分裂过程中的酵母中心体动力学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
fei wang其他文献
fei wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('fei wang', 18)}}的其他基金
Mechanistic dissection of a novel meiotic exit regulation by autophagy
自噬新型减数分裂退出调节的机制剖析
- 批准号:
10569656 - 财政年份:2020
- 资助金额:
$ 34.39万 - 项目类别:
Mechanistic dissection of a novel meiotic exit regulation by autophagy - Equipment Supplement
通过自噬进行新型减数分裂退出调节的机制剖析 - 设备补充
- 批准号:
10796726 - 财政年份:2020
- 资助金额:
$ 34.39万 - 项目类别:
Mechanistic dissection of a novel meiotic exit regulation by autophagy
自噬新型减数分裂退出调节的机制剖析
- 批准号:
10357891 - 财政年份:2020
- 资助金额:
$ 34.39万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Effects of Aging on Neuronal Lysosomal Damage Responses Driven by CMT2B-linked Rab7
衰老对 CMT2B 相关 Rab7 驱动的神经元溶酶体损伤反应的影响
- 批准号:
10678789 - 财政年份:2023
- 资助金额:
$ 34.39万 - 项目类别:
Senescent hepatocytes mediate reprogramming of immune cells in acute liver failure
衰老肝细胞介导急性肝衰竭中免疫细胞的重编程
- 批准号:
10679938 - 财政年份:2023
- 资助金额:
$ 34.39万 - 项目类别:
Impact of TBI and Cognitive Decline on Alzheimer's Disease Brain-Derived Exosome Cargo
TBI 和认知能力下降对阿尔茨海默病脑源性外泌体货物的影响
- 批准号:
10662883 - 财政年份:2023
- 资助金额:
$ 34.39万 - 项目类别:
p16INK4a+ fibroblasts regulate epithelial regeneration after injury in lung alveoli through the SASP
p16INK4a成纤维细胞通过SASP调节肺泡损伤后的上皮再生
- 批准号:
10643269 - 财政年份:2023
- 资助金额:
$ 34.39万 - 项目类别:
Stabilizing the tripartite synaptic complex following TBI
TBI 后稳定三方突触复合体
- 批准号:
10844877 - 财政年份:2023
- 资助金额:
$ 34.39万 - 项目类别: