Physical Dynamics of Cancer Response to Chemotherapy in 3D Microenvironments
3D 微环境中癌症对化疗反应的物理动力学
基本信息
- 批准号:9543230
- 负责人:
- 金额:$ 51.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-25 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:AcidityAddressAdverse effectsAffectApoptosisBiomedical EngineeringBiopsyBiopsy SpecimenBioreactorsBreastBreast Cancer cell lineCell Culture TechniquesCell LineCellular SpheroidsChemicalsClinical assessmentsComplexComputer SimulationCoupledDevelopmentDimensionsDiseaseDoseEngineeringExperimental ModelsExposure toExtracellular MatrixFeedbackGoalsGrowthGrowth and Development functionHumanIn VitroIntercellular FluidLab-On-A-ChipsMalignant NeoplasmsMammary NeoplasmsMeasurementMetabolicMethodologyMethodsMicrofluidic MicrochipsModelingMonitorMorphologyNecrosisNormal tissue morphologyNutrientOrganoidsOutcomeOutcome StudyPatientsPatternPharmaceutical PreparationsPharmacotherapyPrediction of Response to TherapyPrimary NeoplasmPropertyResolutionRunningSystemTechnologyTherapeuticThickTissuesTracerTumor TissueTumor-Derivedanticancer treatmentbasechemotherapydesigndrug efficacyimprovedin vitro Modelin vivoin vivo Modelmalignant breast neoplasmmathematical modelnovelorgan on a chippersonalized predictionspersonalized therapeuticphysical sciencepre-clinicalpredictive testpressurepublic health relevancereconstructionresponsesenescencesimulationtherapeutic developmentthree dimensional cell culturetreatment responsetumortumor growthtumor microenvironmenttumorigenic
项目摘要
DESCRIPTION (provided by applicant): These studies aim to develop a new computationally driven platform to examine complex physical and chemical microenvironments utilizing organ-on-chip microfluidic bioreactor technology coupled with a predictive mathematical model of tumor growth and therapeutic response. Malignant breast tumors are highly heterogeneous in terms of their cellular composition, varying levels of oxygenation, acidity, and nutrients, as well
as local changes in the extracellular matrix. Furthermore, tumor tissue and tumor microenvironment properties can dynamically evolve not only during tumor growth but also when anticancer treatments are administered. Despite this, nearly all pre-clinical assessments of drug efficacy and optimal dosing are performed using homogeneous 2D cell cultures that do not resemble the cellular, metabolic, and physical features manifest in tumors in vivo. Such approach suffered from overly reductionist ex vivo / in vitro studies may not fully recapitulate th complexity of cancers especially the physical and chemical microenvironment. To address these issues we propose to develop an integrated quantitative platform that combines the power of organ-on-chip 3D tissue bioreactor, developed to include non-uniform fully controlled physical and chemical microenvironments, together with a 3DMultiCel math model that allows predictive testing of a broad range of microenvironmental combinations around the experimentally validated baseline. To achieve this goal in a quantitative way we have formed a transdisciplinary team consisting of cancer biologists, biomedical engineers and mathematicians, who will develop an experimental platform for individualized anticancer treatment based on physical science principles. Our long-term goal is to provide a computationally driven "lab-on-chip" platform for 3D organotypic cultures derived from patients' tumor biopsies that will be exposed to fully controlled but dynamically variable microenvironments that will be used to optimize personalized therapeutic treatments that effectively provoke breast tumor regression with minimized harmful side effects for surrounding normal tissue. Outcomes of this study will be: (i) an improved experimental platform that combines 3D culture of tumor organoids coupled with validated predictive mathematical models for the growth and response of human breast tumor organoids within realistic microenvironments; and (ii) quantitative methods that allow one to assess the dynamics of breast tumor organoid development and response to anti-tumor treatments, using mathematical modeling. Our aims are: 1. Develop a predictive methodology to assess effects of defined microenvironments on the dynamics of normal and tumorigenic breast organoids and their sensitivity to therapeutics; 2. Construct and validate in silico model-guided complex spatial and temporal microenvironmental gradients established within TTb-G reactor, and assess breast tumor organoids response to chemotherapeutics. 3. Apply our integrated computational/engineering approach to guide therapy and predict therapeutic response ex vivo and in vivo.
描述(由应用程序提供):这些研究旨在开发一个新的计算驱动平台,以检查使用器官芯片微流体生物反应器技术的复杂物理和化学微环境,并结合了肿瘤生长和治疗反应的预测数学模型。恶性乳腺肿瘤在其细胞组成,氧合水平,酸度和营养水平的程度上是高度异质的
随着细胞外基质的局部变化。此外,肿瘤组织和肿瘤微环境的特性不仅可以在肿瘤生长过程中动态发展,而且还可以在施用抗癌治疗时进化。尽管如此,几乎所有对药物效率和最佳剂量的临床前评估都是使用与细胞,代谢和物理特征相似的均质2D细胞培养物进行的。这种方法受到过度还原主义的离体 /体外研究的影响,可能无法完全概括癌症的复杂性,尤其是物理和化学微环境的复杂性。为了解决这些问题,我们建议开发一个集成的定量平台,该平台结合了芯片3D组织生物反应器的功能,开发的是包括非均匀控制的物理和化学微环境,以及3DMulticel数学模型,允许对围绕实验平面进行广泛的微环境组合的预测测试。为了以定量的方式实现这一目标,我们组成了一个由癌症生物学家,生物医学工程师和数学家组成的跨学科团队,他们将基于物理科学原理开发一个实验平台,以用于个性化的抗癌治疗。我们的长期目标是为3D有机培养物提供一个计算驱动的“实验室芯片”平台,该平台从患者的肿瘤活检中得出,该平台将暴露于完全控制但动态可变的微环境中,这些微环境将用于优化个性化的治疗治疗,可有效地促进乳腺肿瘤回归的乳房肿瘤,并为周围的正常造成正常的副作用而产生最小化的伤害副作用。这项研究的结果将是:(i)一个改进的实验平台,结合了肿瘤类器官的3D培养物,并结合了经过验证的预测性数学模型,以实现逼真的微环境中人类乳腺肿瘤器官的生长和反应; (ii)使用数学建模允许人们评估乳腺肿瘤器官发育和对抗肿瘤处理的反应的定量方法。我们的目的是:1。开发一种预测方法来评估定义的微环境对正常和肿瘤性乳腺癌动力学的影响及其对治疗的敏感性; 2。构建和验证在TTB-G反应器内建立的硅模型引导的复合空间和临时微环境梯度,并评估乳腺肿瘤类器官对化学治疗剂的反应。 3。应用我们的集成计算/工程方法指导治疗并预测体内和体内治疗反应。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
LISA Joy MCCAWLEY其他文献
LISA Joy MCCAWLEY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('LISA Joy MCCAWLEY', 18)}}的其他基金
Organ-on-chip bioreactors for recreating breast to brain metastases
用于重建乳腺至脑转移瘤的器官芯片生物反应器
- 批准号:
10416014 - 财政年份:2021
- 资助金额:
$ 51.32万 - 项目类别:
Organ-on-chip bioreactors for recreating breast to brain metastases
用于重建乳腺至脑转移瘤的器官芯片生物反应器
- 批准号:
10173462 - 财政年份:2021
- 资助金额:
$ 51.32万 - 项目类别:
Physical Dynamics of Cancer Response to Chemotherapy in 3D Microenvironments
3D 微环境中癌症对化疗反应的物理动力学
- 批准号:
9762592 - 财政年份:2015
- 资助金额:
$ 51.32万 - 项目类别:
Physical Dynamics of Cancer Response to Chemotherapy in 3D Microenvironments
3D 微环境中癌症对化疗反应的物理动力学
- 批准号:
9150548 - 财政年份:2015
- 资助金额:
$ 51.32万 - 项目类别:
Physical Dynamics of Cancer Response to Chemotherapy in 3D Microenvironments
3D 微环境中癌症对化疗反应的物理动力学
- 批准号:
9024313 - 财政年份:2015
- 资助金额:
$ 51.32万 - 项目类别:
Matrix Metalloproteinase Regulation of Leukocyte Infiltration during Wound Repair
伤口修复过程中基质金属蛋白酶对白细胞浸润的调节
- 批准号:
8326164 - 财政年份:2010
- 资助金额:
$ 51.32万 - 项目类别:
Matrix Metalloproteinase Regulation of Leukocyte Infiltration during Wound Repair
伤口修复过程中基质金属蛋白酶对白细胞浸润的调节
- 批准号:
8534852 - 财政年份:2010
- 资助金额:
$ 51.32万 - 项目类别:
Matrix Metalloproteinase Regulation of Leukocyte Infiltration during Wound Repair
伤口修复过程中基质金属蛋白酶对白细胞浸润的调节
- 批准号:
8727028 - 财政年份:2010
- 资助金额:
$ 51.32万 - 项目类别:
Matrix Metalloproteinase Regulation of Leukocyte Infiltration during Wound Repair
伤口修复过程中基质金属蛋白酶对白细胞浸润的调节
- 批准号:
8145679 - 财政年份:2010
- 资助金额:
$ 51.32万 - 项目类别:
Matrix Metalloproteinase Regulation of Leukocyte Infiltration during Wound Repair
伤口修复过程中基质金属蛋白酶对白细胞浸润的调节
- 批准号:
7987568 - 财政年份:2010
- 资助金额:
$ 51.32万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Variations in long-term fine particulate matter air pollution associations with mortality by particle size, source, and composition
长期细颗粒物空气污染的变化与颗粒物大小、来源和成分的死亡率相关
- 批准号:
10718385 - 财政年份:2023
- 资助金额:
$ 51.32万 - 项目类别:
Smart Photodynamic Therapy for Acne by Reversibly Switchable Intersystem Crossing in Pure Organic Materials
通过纯有机材料中的可逆可切换系间交叉来治疗痤疮的智能光动力疗法
- 批准号:
10483461 - 财政年份:2022
- 资助金额:
$ 51.32万 - 项目类别:
The role of ion channels and transporters in B cell function
离子通道和转运蛋白在 B 细胞功能中的作用
- 批准号:
10620690 - 财政年份:2022
- 资助金额:
$ 51.32万 - 项目类别:
Development of a tumor-activated IL12 prodrug to treat solid tumors
开发肿瘤激活的 IL12 前药来治疗实体瘤
- 批准号:
10374765 - 财政年份:2021
- 资助金额:
$ 51.32万 - 项目类别:
Development of a tumor-activated IL12 prodrug to treat solid tumors
开发肿瘤激活的 IL12 前药来治疗实体瘤
- 批准号:
10152759 - 财政年份:2021
- 资助金额:
$ 51.32万 - 项目类别: