Physical Dynamics of Cancer Response to Chemotherapy in 3D Microenvironments
3D 微环境中癌症对化疗反应的物理动力学
基本信息
- 批准号:9762592
- 负责人:
- 金额:$ 79.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-25 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAcidityAddressAffectApoptosisBiomedical EngineeringBiopsyBiopsy SpecimenBioreactorsBreastBreast Cancer cell lineCell Culture TechniquesCell LineCellular SpheroidsChemicalsClinical assessmentsComplexComputer SimulationCoupledDevelopmentDimensionsDiseaseDoseEngineeringExperimental ModelsExposure toExtracellular MatrixFeedbackGoalsGrowthGrowth and Development functionHumanIn VitroIntercellular FluidLab-On-A-ChipsMalignant NeoplasmsMammary NeoplasmsMeasurementMetabolicMethodologyMethodsMicrofluidic MicrochipsModelingMonitorMorphologyNecrosisNormal tissue morphologyNutrientOrganoidsOutcomeOutcome StudyPatientsPatternPharmaceutical PreparationsPharmacotherapyPrediction of Response to TherapyPrimary NeoplasmPropertyResolutionRunningSystemTechnologyTherapeuticThickTissuesTracerTumor TissueTumor-Derivedanticancer treatmentbasechemotherapydesigndrug efficacyimprovedin vitro Modelin vivoin vivo Modelmalignant breast neoplasmmathematical modelnovelorgan on a chippersonalized predictionspersonalized therapeuticphysical sciencepre-clinicalpredictive testpressurepublic health relevancereconstructionresponsesenescenceside effectsimulationtherapeutic developmentthree dimensional cell culturetreatment responsetumortumor growthtumor microenvironmenttumorigenic
项目摘要
DESCRIPTION (provided by applicant): These studies aim to develop a new computationally driven platform to examine complex physical and chemical microenvironments utilizing organ-on-chip microfluidic bioreactor technology coupled with a predictive mathematical model of tumor growth and therapeutic response. Malignant breast tumors are highly heterogeneous in terms of their cellular composition, varying levels of oxygenation, acidity, and nutrients, as well
as local changes in the extracellular matrix. Furthermore, tumor tissue and tumor microenvironment properties can dynamically evolve not only during tumor growth but also when anticancer treatments are administered. Despite this, nearly all pre-clinical assessments of drug efficacy and optimal dosing are performed using homogeneous 2D cell cultures that do not resemble the cellular, metabolic, and physical features manifest in tumors in vivo. Such approach suffered from overly reductionist ex vivo / in vitro studies may not fully recapitulate th complexity of cancers especially the physical and chemical microenvironment. To address these issues we propose to develop an integrated quantitative platform that combines the power of organ-on-chip 3D tissue bioreactor, developed to include non-uniform fully controlled physical and chemical microenvironments, together with a 3DMultiCel math model that allows predictive testing of a broad range of microenvironmental combinations around the experimentally validated baseline. To achieve this goal in a quantitative way we have formed a transdisciplinary team consisting of cancer biologists, biomedical engineers and mathematicians, who will develop an experimental platform for individualized anticancer treatment based on physical science principles. Our long-term goal is to provide a computationally driven "lab-on-chip" platform for 3D organotypic cultures derived from patients' tumor biopsies that will be exposed to fully controlled but dynamically variable microenvironments that will be used to optimize personalized therapeutic treatments that effectively provoke breast tumor regression with minimized harmful side effects for surrounding normal tissue. Outcomes of this study will be: (i) an improved experimental platform that combines 3D culture of tumor organoids coupled with validated predictive mathematical models for the growth and response of human breast tumor organoids within realistic microenvironments; and (ii) quantitative methods that allow one to assess the dynamics of breast tumor organoid development and response to anti-tumor treatments, using mathematical modeling. Our aims are: 1. Develop a predictive methodology to assess effects of defined microenvironments on the dynamics of normal and tumorigenic breast organoids and their sensitivity to therapeutics; 2. Construct and validate in silico model-guided complex spatial and temporal microenvironmental gradients established within TTb-G reactor, and assess breast tumor organoids response to chemotherapeutics. 3. Apply our integrated computational/engineering approach to guide therapy and predict therapeutic response ex vivo and in vivo.
描述(由申请人提供):这些研究旨在开发一种新的计算驱动平台,利用片上器官微流体生物反应器技术以及肿瘤生长和治疗反应的数学模型来检查复杂的物理和化学预测微环境。在细胞组成、不同水平的氧合、酸度和营养方面也具有高度异质性
此外,肿瘤组织和肿瘤微环境特性不仅可以在肿瘤生长过程中动态变化,而且在进行抗癌治疗时也可以动态变化,尽管如此,几乎所有药物疗效和最佳剂量的临床前评估都是通过使用来进行的。均质的二维细胞培养物与体内肿瘤中表现出的细胞、代谢和物理特征不同,这种方法受到过度简化的离体/体外研究的影响,可能无法完全概括癌症的复杂性,尤其是物理和化学的复杂性。为了解决这些问题,我们建议开发一个集成的定量平台,该平台结合了片上器官 3D 组织生物反应器的强大功能,该平台包含非均匀完全控制的物理和化学微环境,以及可进行预测的 3DMultiCel 数学模型。为了以定量的方式实现这一目标,我们组建了一个由癌症生物学家、生物医学工程师和数学家组成的跨学科团队,他们将开发一个基于实验验证的基线的广泛微环境组合。基于物理科学原理的个体化抗癌治疗实验平台,我们的长期目标是为源自患者肿瘤活检的 3D 器官型培养物提供一个计算驱动的“芯片实验室”平台,这些培养物将受到完全控制但动态的影响。可变的微环境将用于优化个性化治疗,有效地促进乳腺肿瘤消退,同时最大限度地减少对周围正常组织的有害副作用。本研究的结果将是:(i) 一个结合肿瘤 3D 培养的改进的实验平台。类器官与经过验证的预测数学模型相结合,用于现实微环境中人类乳腺肿瘤类器官的生长和反应;以及(ii)定量方法,使人们能够利用数学模型评估乳腺肿瘤类器官发育的动态和对抗肿瘤治疗的反应;我们的目标是: 1. 开发一种预测方法来评估特定微环境对正常和致瘤乳腺类器官的动态及其对治疗的敏感性的影响; 2. 在计算机模型引导下构建和验证复杂的空间和TTb-G 反应器内建立时间微环境梯度,并评估乳腺肿瘤类器官对化疗的反应。 3. 应用我们的集成计算/工程方法来指导治疗并预测体外和体内的治疗反应。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Parahydrogen-Induced Magnetization of Jovian Planets?
- DOI:10.1021/acsearthspacechem.9b00326
- 发表时间:2020-04-16
- 期刊:
- 影响因子:3.4
- 作者:Chekmenev EY
- 通讯作者:Chekmenev EY
Microenvironmental Niches and Sanctuaries: A Route to Acquired Resistance.
- DOI:10.1007/978-3-319-42023-3_8
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Perez-Velazquez, Judith;Gevertz, Jana L.;Karolak, Aleksandra;Rejniak, Katarzyna A.
- 通讯作者:Rejniak, Katarzyna A.
Parahydrogen-Induced Hyperpolarization of Gases
- DOI:10.1002/anie.201915306
- 发表时间:2020-08-11
- 期刊:
- 影响因子:16.6
- 作者:Kovtunov, Kirill, V;Koptyug, Igor, V;Chekmenev, Eduard, V
- 通讯作者:Chekmenev, Eduard, V
Hyperpolarized NMR Spectroscopy: d-DNP, PHIP, and SABRE Techniques.
- DOI:10.1002/asia.201800551
- 发表时间:2018-05-23
- 期刊:
- 影响因子:0
- 作者:Kovtunov KV;Pokochueva EV;Salnikov OG;Cousin SF;Kurzbach D;Vuichoud B;Jannin S;Chekmenev EY;Goodson BM;Barskiy DA;Koptyug IV
- 通讯作者:Koptyug IV
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
LISA Joy MCCAWLEY其他文献
LISA Joy MCCAWLEY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('LISA Joy MCCAWLEY', 18)}}的其他基金
Organ-on-chip bioreactors for recreating breast to brain metastases
用于重建乳腺至脑转移瘤的器官芯片生物反应器
- 批准号:
10416014 - 财政年份:2021
- 资助金额:
$ 79.15万 - 项目类别:
Organ-on-chip bioreactors for recreating breast to brain metastases
用于重建乳腺至脑转移瘤的器官芯片生物反应器
- 批准号:
10173462 - 财政年份:2021
- 资助金额:
$ 79.15万 - 项目类别:
Physical Dynamics of Cancer Response to Chemotherapy in 3D Microenvironments
3D 微环境中癌症对化疗反应的物理动力学
- 批准号:
9150548 - 财政年份:2015
- 资助金额:
$ 79.15万 - 项目类别:
Physical Dynamics of Cancer Response to Chemotherapy in 3D Microenvironments
3D 微环境中癌症对化疗反应的物理动力学
- 批准号:
9024313 - 财政年份:2015
- 资助金额:
$ 79.15万 - 项目类别:
Physical Dynamics of Cancer Response to Chemotherapy in 3D Microenvironments
3D 微环境中癌症对化疗反应的物理动力学
- 批准号:
9543230 - 财政年份:2015
- 资助金额:
$ 79.15万 - 项目类别:
Matrix Metalloproteinase Regulation of Leukocyte Infiltration during Wound Repair
伤口修复过程中基质金属蛋白酶对白细胞浸润的调节
- 批准号:
8326164 - 财政年份:2010
- 资助金额:
$ 79.15万 - 项目类别:
Matrix Metalloproteinase Regulation of Leukocyte Infiltration during Wound Repair
伤口修复过程中基质金属蛋白酶对白细胞浸润的调节
- 批准号:
8727028 - 财政年份:2010
- 资助金额:
$ 79.15万 - 项目类别:
Matrix Metalloproteinase Regulation of Leukocyte Infiltration during Wound Repair
伤口修复过程中基质金属蛋白酶对白细胞浸润的调节
- 批准号:
8534852 - 财政年份:2010
- 资助金额:
$ 79.15万 - 项目类别:
Matrix Metalloproteinase Regulation of Leukocyte Infiltration during Wound Repair
伤口修复过程中基质金属蛋白酶对白细胞浸润的调节
- 批准号:
8145679 - 财政年份:2010
- 资助金额:
$ 79.15万 - 项目类别:
Matrix Metalloproteinase Regulation of Leukocyte Infiltration during Wound Repair
伤口修复过程中基质金属蛋白酶对白细胞浸润的调节
- 批准号:
7987568 - 财政年份:2010
- 资助金额:
$ 79.15万 - 项目类别:
相似国自然基金
紫云英还田减缓水稻土酸化的酸度平衡定量分析和酸缓冲机制研究
- 批准号:32302676
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
过氧化物在酸度系数(pKa)下自分解强化氧化的性能与机制
- 批准号:22306134
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大气气溶胶pH的检测及单颗粒内部酸度梯度分布研究
- 批准号:22376028
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
苹果MdARP1转录因子调控果实酸度的功能与机理解析
- 批准号:32372658
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
液相纳米气溶胶的成核生长过程、酸度模型与气液界面反应机制的理论模拟研究
- 批准号:22373009
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Mechanical Modulation of Cell Migrations by DNA Nanoassemblies
DNA 纳米组件对细胞迁移的机械调节
- 批准号:
10659333 - 财政年份:2023
- 资助金额:
$ 79.15万 - 项目类别: