Biophysical Control of Cell Form and Function by Single Actomyosin Stress Fibers
单个肌动球蛋白应力纤维对细胞形态和功能的生物物理控制
基本信息
- 批准号:9548238
- 负责人:
- 金额:$ 29.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:ActinsActomyosinAddressApoptosisAutomobile DrivingBiologicalBiophotonicsBiophysical ProcessBiophysicsBrainBrain NeoplasmsCell Culture TechniquesCell ShapeCellsCellular biologyClassificationCustomCytoskeletonDevelopmentDiseaseDorsalEGF geneElementsEngineeringExtracellular MatrixFamilyFiberFluorescenceFluorescence Resonance Energy TransferGeneticGlioblastomaHomeostasisImageIndividualInfiltrationInterphase CellLasersLocationMalignant neoplasm of brainMapsMeasurementMeasuresMechanicsMethodsMicrofilamentsMicrofluidicsModelingMolecularMolecular BiologyMolecular MotorsMorphogenesisMotorMyosin ATPaseMyosin Type IINeoplasm MetastasisNonmuscle Myosin Type IIANonmuscle Myosin Type IIBNormal tissue morphologyOncogenicPhenotypeProcessPropertyProtein IsoformsRegulationShapesSignal TransductionSliceStress FibersStructureSystemTechnologyThinkingTissue ModelTissuesTractionTraction Force MicroscopyTumor Cell InvasionUrsidae FamilyWorkbasecell motilityin vivoinnovationinterestloss of functionmechanical loadmechanical propertiesmigrationmolecular scalenanosurgerysensorstoichiometrytooltransmission processtwo-dimensionalvirtualviscoelasticity
项目摘要
PROJECT SUMMARY/ABSTRACT
Actomyosin stress fibers (SFs) enable cells to tense the extracellular matrix (ECM), a process key to cell shape
determination, polarity, motility, and tissue morphogenesis. SFs within motile cells have been broadly
classified into three specialized “subtypes” (dorsal fibers, transverse arcs, and ventral fibers) that differ in their
antero-posterior location and network connectivity. In addition to driving normal tissue development and
homeostasis, SFs and analogous contractile structures contribute to the invasion of tumors within tissue, a
notable example of which is the perivascular infiltration of the deadly brain tumor glioblastoma multiforme
(GBM). It has been hypothesized that dorsal fibers, transverse arcs, and ventral fibers tense each other and
the ECM in very specific ways to govern cell shape, polarity, and motility. However, this paradigm suffers from
several critical limitations. For example, it has not been directly demonstrated that each SF subtype generates
tension as commonly assumed, which in turn derives from a lack of direct measurement of SF mechanical
properties in living cells. Additionally, while these subtypes are broadly understood to vary in the molecular
motors they contain (i.e. myosin II isoforms), we know virtually nothing about how these molecular-scale
differences create the contractility differences across SF subtypes. Finally, and perhaps most importantly, it is
unclear whether this subtype classification is relevant to the persistent migration of cells within tissue,
particularly in disease states driven by aberrant cell migration. In this proposal we address all three of these
critical open questions by combining single-cell biophotonic technologies, traditional cell and molecular biology
approaches, engineered culture systems, and ex vivo tissue models. A key enabling tool for these studies
(which our team has pioneered over the past decade) is femtosecond laser nanosurgery (FLN), which enables
us to selectively cut single SFs in living cells, thereby allowing us to deduce both the mechanical loads borne
by that SF and its structural contributions to the rest of the cell. In Aim 1, we will apply FLN to selectively incise
SFs from each canonical subtype to map these mechanical properties and structural contributions. We will
also combine FLN with single-cell micropatterning and fluorescence-based readouts of molecular tension to
determine how single SFs distribute tension throughout the cell and contribute to EGF-dependent polarization
and motility. In Aim 2, we will investigate how the stoichiometry and mechanochemical properties of specific
myosin II isoforms collaborate to determine the mechanical properties of the entire SF. In Aim 3, we will
combine these approaches with a microfluidic model we developed with a brain-slice paradigm to determine
how specific SF subtypes and the myosin isoforms therein contribute to perivascular invasion in GBM. To our
knowledge, Aim 3 studies will represent the first measurements of SF mechanics and function in mammalian
tissue. In summary, this project will marry innovative single-cell and culture technologies to address major
open questions surrounding the microscale, biophysical mechanisms of cell shape shape, polarity, and motility.
项目概要/摘要
肌动球蛋白应力纤维 (SF) 使细胞能够拉紧细胞外基质 (ECM),这是细胞形状的关键过程
运动细胞内的决定、极性、运动和组织形态发生已被广泛研究。
分为三种专门的“亚型”(背侧纤维、横弓和腹侧纤维),它们的作用不同
前后位置和网络连接除了驱动正常组织发育和
稳态、SF 和类似的收缩结构有助于肿瘤侵入组织内,
其中一个例子是致命性脑肿瘤多形性胶质母细胞瘤的血管周围浸润
(GBM)已经发展为背侧纤维、横弓和腹侧纤维相互拉紧并且
ECM 以非常特定的方式来控制细胞形状、极性和运动性。然而,这种模式存在问题。
例如,尚未直接证明每种 SF 亚型都会产生。
通常假设的张力,这又源于缺乏对 SF 机械的直接测量
此外,虽然人们普遍认为这些亚型在分子上有所不同。
它们包含的马达(即肌球蛋白 II 亚型),我们几乎不知道这些分子尺度如何
最后,也许最重要的是,差异导致了 SF 亚型之间的收缩性差异。
不清楚这种亚型分类是否与组织内细胞的持续迁移有关,
特别是在由异常细胞迁移驱动的疾病状态中,我们解决了所有这三个问题。
通过结合单细胞生物光子技术、传统细胞和分子生物学来解决关键的开放问题
方法、工程培养系统和离体组织模型是这些研究的关键支持工具。
(我们的团队在过去十年中开创的)是飞秒激光纳米手术 (FLN),它使
我们有选择地切割活细胞中的单个 SF,从而使我们能够推断出所承受的机械载荷
通过该 SF 及其对细胞其余部分的结构贡献,在目标 1 中,我们将应用 FLN 进行选择性切割。
我们将使用来自每个规范子类型的 SF 来绘制这些机械特性和结构贡献。
还将 FLN 与单细胞微图案和基于荧光的分子张力读数相结合
确定单个 SF 如何在整个细胞中分配张力并有助于 EGF 依赖性极化
在目标 2 中,我们将研究特定物质的化学计量和机械化学性质。
在目标 3 中,我们将通过肌球蛋白 II 亚型协作确定整个 SF 的机械特性。
将这些方法与我们用脑切片范例开发的微流体模型相结合,以确定
特定的 SF 亚型和其中的肌球蛋白亚型如何导致 GBM 的血管周围侵袭。
知识,目标 3 研究将代表哺乳动物中 SF 力学和功能的首次测量
总之,该项目将结合创新的单细胞和培养技术来解决主要问题。
围绕细胞形状、极性和运动性的微观生物物理机制的开放性问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sanjay Kumar其他文献
Sanjay Kumar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sanjay Kumar', 18)}}的其他基金
Mechanisms of adhesion and invasion in hyaluronic acid matrices
透明质酸基质的粘附和侵袭机制
- 批准号:
10380867 - 财政年份:2021
- 资助金额:
$ 29.93万 - 项目类别:
Mechanisms of adhesion and invasion in hyaluronic acid matrices
透明质酸基质的粘附和侵袭机制
- 批准号:
10185347 - 财政年份:2021
- 资助金额:
$ 29.93万 - 项目类别:
Mechanisms of adhesion and invasion in hyaluronic acid matrices
透明质酸基质的粘附和侵袭机制
- 批准号:
10605241 - 财政年份:2021
- 资助金额:
$ 29.93万 - 项目类别:
Cellular mechanobiology and engineering of active brown adipose tissue
活性棕色脂肪组织的细胞力学生物学和工程
- 批准号:
9912145 - 财政年份:2019
- 资助金额:
$ 29.93万 - 项目类别:
Cellular mechanobiology and engineering of active brown adipose tissue
活性棕色脂肪组织的细胞力学生物学和工程
- 批准号:
10415961 - 财政年份:2019
- 资助金额:
$ 29.93万 - 项目类别:
Cellular mechanobiology and engineering of active brown adipose tissue
活性棕色脂肪组织的细胞力学生物学和工程
- 批准号:
10170330 - 财政年份:2019
- 资助金额:
$ 29.93万 - 项目类别:
Cellular mechanobiology and engineering of active brown adipose tissue
活性棕色脂肪组织的细胞力学生物学和工程
- 批准号:
9747438 - 财政年份:2018
- 资助金额:
$ 29.93万 - 项目类别:
Biophysical Control of Cell Form and Function by Single Actomyosin Stress Fibers
单个肌动球蛋白应力纤维对细胞形态和功能的生物物理控制
- 批准号:
10669215 - 财政年份:2017
- 资助金额:
$ 29.93万 - 项目类别:
Biophysical Control of Cell Form and Function by Single Actomyosin Stress Fibers
单个肌动球蛋白应力纤维对细胞形态和功能的生物物理控制
- 批准号:
9399083 - 财政年份:2017
- 资助金额:
$ 29.93万 - 项目类别:
Biophysical Control of Cell Form and Function by Single Actomyosin Stress Fibers
单个肌动球蛋白应力纤维对细胞形态和功能的生物物理控制
- 批准号:
10445792 - 财政年份:2017
- 资助金额:
$ 29.93万 - 项目类别:
相似国自然基金
由actomyosin介导的集体性细胞迁移对唇腭裂发生的影响的研究
- 批准号:82360313
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于Pickering纳米乳液脂质诱导肌动球蛋白凝胶的空间位阻效应及其机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
鱼糜肌动球蛋白的增效转化及其氧化控制分子机制研究
- 批准号:
- 批准年份:2021
- 资助金额:59 万元
- 项目类别:面上项目
低频超声场下肉品肌动球蛋白敏感结构域及其构象变化的作用机制
- 批准号:31901612
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于飞秒激光微纳手术研究亚细胞尺度分子马达网络调控细胞三维运动的生物物理机理
- 批准号:31701215
- 批准年份:2017
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Cytoskeleton-mediated regulation of insulin secretion hot spots in pancreatic beta cells
细胞骨架介导的胰腺β细胞胰岛素分泌热点的调节
- 批准号:
10679903 - 财政年份:2023
- 资助金额:
$ 29.93万 - 项目类别:
Actin gating of crosstalk between Rho GTPases in cell migration
细胞迁移中 Rho GTP 酶之间串扰的肌动蛋白门控
- 批准号:
10736927 - 财政年份:2023
- 资助金额:
$ 29.93万 - 项目类别:
Volumetric analysis of epithelial morphogenesis with high spatiotemporal resolution
高时空分辨率上皮形态发生的体积分析
- 批准号:
10586534 - 财政年份:2023
- 资助金额:
$ 29.93万 - 项目类别:
Role of the S100 Family of Proteins in Lens Physiology and Cataract
S100 蛋白家族在晶状体生理学和白内障中的作用
- 批准号:
10560827 - 财政年份:2023
- 资助金额:
$ 29.93万 - 项目类别:
Pericyte control of capillary perfusion in the Alzheimer's disease brain
阿尔茨海默病大脑中毛细血管灌注的周细胞控制
- 批准号:
10655813 - 财政年份:2023
- 资助金额:
$ 29.93万 - 项目类别: