Biophysical Control of Cell Form and Function by Single Actomyosin Stress Fibers
单个肌动球蛋白应力纤维对细胞形态和功能的生物物理控制
基本信息
- 批准号:10445792
- 负责人:
- 金额:$ 33.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-20 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
PROJECT SUMMARY/ABSTRACT
Actomyosin stress fibers (SFs) enable cells to tense the extracellular matrix (ECM), a process key to cell shape
determination, motility, and morphogenesis. Over the past 15+ years, including the past period of R01
support, we have made significant contributions to the field’s understanding of SF mechanics and contributions
to cell structure. Our work is particularly notable for the use of femtosecond laser nanosurgery (FLN), which
has enabled us to show that the three canonical SF subtypes – dorsal fibers, transverse arcs, and ventral
fibers – collectively enforce a front-back tension gradient that underlies two-dimensional (2D) mesenchymal
migration. We also showed that the SF network architecture can mechanically reinforce individual SFs, which
has significant implications for symmetry breakage during directed migration and force propagation through cell
monolayers. With this intellectual foundation in place, our renewal application turns to two important
questions: How is polarization of tension in the SF network encoded by molecular signals classically
understood to establish front-back polarity? And how does our knowledge of 2D SF networks translate to
confined migration geometries like those found in tissue? We will address these questions through two
specific aims, both of which build upon publications from this award. In Specific Aim 1, we will investigate
mechanistic contributions of cofilin-1 to establishment and maintenance of SF front-back tension polarization
during migration. We hypothesize that cofilin-1 establishes front-back polarization of SF tension by promoting
the assembly and contractile maturation of transverse arcs. By combining biophysical, engineering, and cell
biological tools, we will identify key molecular and force-based signals that modulate recruitment of cofilin-1 to
developing transverse arcs. In an innovative new collaboration with Dr. Bruce Goode (Brandeis) we will
reconstitute actin bundles in microfluidic devices and quantify the relationship between tensile force and cofilin-
1 engagement. In Specific Aim 2, we will dissect contributions of SF networks to migration in confined
geometries where the ECM imposes axial cues and sterically precludes elaboration of 2D SF networks. We
hypothesize that increasing confinement redirects SF assembly from the 2D dorsal fiber-transverse arc-ventral
fiber assembly pathway towards de novo parallelized SF assembly. We will combine microengineered culture
platforms, single-cell mechanical tools, and superresolution imaging to probe confinement-induced changes in
SF assembly, architecture, and mechanics. Aim 2 will leverage two established, productive collaborations:
With Dr. Ulrich Schwarz (U. Heidelberg), we will develop multiscale computational models that relate SF
network architecture and mechanics to cell migration in confined spaces. With neurosurgeon Dr. Manish Aghi
(UCSF), we will test the clinical value of our observations by asking if confined migration of glioblastoma stem
cells is retrospectively predictive of in vivo invasion patterns. Our studies will create unprecedented new insight
into how SFs contribute to migration, with innovative methodology and close connection to human disease.
项目摘要/摘要
肌动蛋白应激纤维(SFS)使细胞能够紧张细胞外基质(ECM),这是细胞形状的过程键
确定,运动和形态发生。在过去的15年以上,包括过去的R01
支持,我们为该领域对SF力学和贡献的理解做出了重大贡献
我们的工作特别值得注意,用于使用飞秒激光纳米外科手术(FLN),这是
使我们能够证明三种规范的SF亚型 - 背纤维,横臂和腹侧
纤维 - 集体强制执行二维(2D)间充质的前后张力梯度
迁移。我们还表明,SF网络体系结构可以机械加强单个SF,这
在定向迁移和通过细胞的力传播期间对称对称破裂具有重要意义
单层。有了这个智力基础,我们的续签应用将变成两个重要的
问题:SF网络中张力的极化是如何通过分子信号编码的
了解建立前后极性吗?以及我们对2D SF网络的了解如何转化为
像在组织中发现的那样,受到狭窄的迁移几何形状?我们将通过两个解决这些问题
具体目标,这两者都基于该奖项的出版物。在特定目标1中,我们将调查
Cofilin-1对SF前后张力极化的建立和维护的机械贡献
在迁移期间。我们假设Cofilin-1通过促进SF张力建立了前后后背极化
横向弧的组装和收缩成熟。通过结合生物物理,工程和细胞
生物工具,我们将确定关键分子和基于力的信号,以调节cofilin-1募集到
发展横向弧。在与Bruce Goode博士(Brandeis)的创新新合作中,我们将
在微流体设备中重新构成肌动蛋白束,并量化拉伸力与cofilin-之间的关系
1参与。在特定目标2中,我们将剖析SF网络对迁移的贡献
ECM不可能轴向提示和在空间上排除2D SF网络的阐述的几何形状。我们
假设增加限制会从2D背纤维 - 横杆 - 腹侧重定向SF组件
纤维组件通向从头并行化的SF组件。我们将结合微工程文化
平台,单细胞机械工具和超分辨率成像,以探测完成诱导的变化
SF组装,建筑和力学。 AIM 2将利用两种已建立的产品合作:
与Ulrich Schwarz博士(U. Heidelberg),我们将开发与SF相关的多尺度计算模型
网络体系结构和机制,以限制空间的细胞迁移。与神经外科医生Manish Aghi博士
(UCSF),我们将通过询问胶质母细胞瘤茎的约束迁移来测试观察结果的临床价值
细胞回顾性地预测体内侵袭模式。我们的研究将创造前所未有的新见解
SFS如何通过创新的方法和与人类疾病紧密联系的方式促进迁移。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Sanjay Kumar的其他基金
Mechanisms of adhesion and invasion in hyaluronic acid matrices
透明质酸基质的粘附和侵袭机制
- 批准号:1038086710380867
- 财政年份:2021
- 资助金额:$ 33.06万$ 33.06万
- 项目类别:
Mechanisms of adhesion and invasion in hyaluronic acid matrices
透明质酸基质的粘附和侵袭机制
- 批准号:1018534710185347
- 财政年份:2021
- 资助金额:$ 33.06万$ 33.06万
- 项目类别:
Mechanisms of adhesion and invasion in hyaluronic acid matrices
透明质酸基质的粘附和侵袭机制
- 批准号:1060524110605241
- 财政年份:2021
- 资助金额:$ 33.06万$ 33.06万
- 项目类别:
Cellular mechanobiology and engineering of active brown adipose tissue
活性棕色脂肪组织的细胞力学生物学和工程
- 批准号:99121459912145
- 财政年份:2019
- 资助金额:$ 33.06万$ 33.06万
- 项目类别:
Cellular mechanobiology and engineering of active brown adipose tissue
活性棕色脂肪组织的细胞力学生物学和工程
- 批准号:1041596110415961
- 财政年份:2019
- 资助金额:$ 33.06万$ 33.06万
- 项目类别:
Cellular mechanobiology and engineering of active brown adipose tissue
活性棕色脂肪组织的细胞力学生物学和工程
- 批准号:1017033010170330
- 财政年份:2019
- 资助金额:$ 33.06万$ 33.06万
- 项目类别:
Cellular mechanobiology and engineering of active brown adipose tissue
活性棕色脂肪组织的细胞力学生物学和工程
- 批准号:97474389747438
- 财政年份:2018
- 资助金额:$ 33.06万$ 33.06万
- 项目类别:
Biophysical Control of Cell Form and Function by Single Actomyosin Stress Fibers
单个肌动球蛋白应力纤维对细胞形态和功能的生物物理控制
- 批准号:1066921510669215
- 财政年份:2017
- 资助金额:$ 33.06万$ 33.06万
- 项目类别:
Biophysical Control of Cell Form and Function by Single Actomyosin Stress Fibers
单个肌动球蛋白应力纤维对细胞形态和功能的生物物理控制
- 批准号:93990839399083
- 财政年份:2017
- 资助金额:$ 33.06万$ 33.06万
- 项目类别:
Biophysical Control of Cell Form and Function by Single Actomyosin Stress Fibers
单个肌动球蛋白应力纤维对细胞形态和功能的生物物理控制
- 批准号:99776979977697
- 财政年份:2017
- 资助金额:$ 33.06万$ 33.06万
- 项目类别:
相似海外基金
Chemoattractant-specific T cell navigation of complex environments
复杂环境中化学引诱剂特异性 T 细胞导航
- 批准号:1074122410741224
- 财政年份:2023
- 资助金额:$ 33.06万$ 33.06万
- 项目类别:
Volumetric analysis of epithelial morphogenesis with high spatiotemporal resolution
高时空分辨率上皮形态发生的体积分析
- 批准号:1058653410586534
- 财政年份:2023
- 资助金额:$ 33.06万$ 33.06万
- 项目类别:
Rac1 and the actin cytoskeleton in renal tubular repair
Rac1 和肌动蛋白细胞骨架在肾小管修复中的作用
- 批准号:1073961010739610
- 财政年份:2023
- 资助金额:$ 33.06万$ 33.06万
- 项目类别:
Molecular Determinants of Kidney Podocyte Architecture in Health, Injury, and Recovery
健康、损伤和恢复中肾足细胞结构的分子决定因素
- 批准号:1065923910659239
- 财政年份:2022
- 资助金额:$ 33.06万$ 33.06万
- 项目类别:
Regulation of dynamic actin networks during epithelial morphogenesis
上皮形态发生过程中动态肌动蛋白网络的调节
- 批准号:1079765510797655
- 财政年份:2022
- 资助金额:$ 33.06万$ 33.06万
- 项目类别: