Fast Methods for Mapping Focused Ultrasound Pressure Fields
绘制聚焦超声压力场的快速方法
基本信息
- 批准号:9388181
- 负责人:
- 金额:$ 23.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:3D ultrasoundAcousticsAddressAdoptedBenchmarkingBlood - brain barrier anatomyClinicClinicalCommunicationComputer softwareConeDevelopmentDevicesDictionaryDimensionsDrug Delivery SystemsEquationEquilibriumExperimental DesignsFibroid TumorFocused UltrasoundFocused Ultrasound TherapyGeometryGoalsGoldHourImageImaging DeviceIn SituLasersLightLiquid substanceLocationMagnetic Resonance ImagingMapsMeasurementMeasuresMethodsModalityModelingMorphologic artifactsMotionNeedlesOptical MethodsOpticsPatternPrivatizationProcessProtocols documentationRadiationRecording of previous eventsRefractive IndicesResearchResolutionSafetySamplingScanningShapesShipsSpeedSystemTabletsTechniquesTechnologyTherapeuticTimeTransducersTranslatingUltrasonic TransducerUltrasonographyValidationVisible RadiationWaterWorkbasebrain surgerycostdensitydesigndosimetryflexibilityimaging systeminnovationinstrumentmathematical modelmathematical theoryportabilitypre-clinicalpressurequality assurancereconstructionresearch and developmentsimulationspatiotemporaltheoriestomographytooltreatment planningtumor
项目摘要
Project Summary
The goal of this R21 EBRG project is to develop new optical methods to map high intensity focused ultrasound
(HIFU) pressure fields. The methods would enable simple, fast, and low-cost in situ HIFU beam measurements,
which are needed for quality assurance and safety in the clinic, and to accelerate the pace of research and
development of new HIFU applications and technologies.
An ideal beam mapping instrument would be low cost, capable of rapidly measuring relevant acoustic
parameters of clinical HIFU systems in situ between treatments, and usable by nontechnical experts. Needle
hydrophones are currently the gold standard tool for mapping HIFU pressure fields, but are poorly suited to
the measurement task since they sample only one spatial location at a time, and most can only measure sub-
therapeutic pressures. They can be translated in a water tank by a motion stage to produce spatially-resolved
pressure maps, but this is a slow and cumbersome measurement that can take several hours to complete. The
techniques proposed in this application could meet this clinical need and also provide a fast, flexible, and spatially-
resolved beam mapping instrument that would be invaluable for HIFU research since it would enable rapid val-
idation and experimental designs that are currently infeasible, such as mapping pressure fields across multiple
experimental variables. Standard optical schlieren imaging has a long history in 2D and 3D ultrasound pressure
field mapping but has conventionally been applied using sophisticated and expensive high-speed optical setups
with limited field-of-view, limited portability and high cost. The methods and devices proposed in this project are
instead based on a newer schlieren technique called background oriented schlieren (BOS) imaging, and in their
simplest form can be implemented using just a water tank, a tablet PC and a webcam. In essence, BOS trades
the sophisticated optical setup for more sophisticated computation, which is a much cheaper commodity.
The central innovation in this project is to use BOS imaging to quantitatively map continuous-wave HIFU
pressure fields in 2D and 3D. The first Aim is to develop portable hardware for BOS imaging and tomography,
that can be used with a wide variety of HIFU systems in situ. The second Aim is to develop the mathematical
theory underlying the BOS image formation process for HIFU beam mapping, which is different from conventional
BOS imaging since the underlying refractive index field is not static. The third Aim is to develop acquisition
and reconstruction methods that produce quantitative spatially-resolved pressure field maps, and validate those
maps against simulations and optical hydrophone measurements of state-of-the-art HIFU systems. By developing
and disseminating BOS hardware, theory, and methods for quantitative 2D and 3D HIFU beam mapping, this
development project will lead to fast, simple and robust devices that can be widely adopted and even shipped
with each clinical HIFU system for regular quality assurance and exposimetry measurements.
项目概要
R21 EBRG 项目的目标是开发新的光学方法来绘制高强度聚焦超声图
(HIFU)压力场,这些方法可以实现简单、快速且低成本的原位 HIFU 光束测量,
这是临床质量保证和安全所需的,并加快研究和开发的步伐
开发新的 HIFU 应用和技术。
理想的波束测绘仪器成本低廉,能够快速测量相关声学
治疗之间的临床 HIFU 系统参数,可供非技术专家使用。
水听器目前是绘制 HIFU 压力场的黄金标准工具,但不太适合
测量任务,因为它们一次仅采样一个空间位置,并且大多数只能测量子
它们可以通过运动平台在水箱中转换以产生空间分辨的压力。
压力图,但这是一种缓慢而繁琐的测量,可能需要几个小时才能完成。
本申请中提出的技术可以满足这种临床需求,并且还提供快速、灵活和空间化的方法。
解析光束映射仪器对于 HIFU 研究来说是无价的,因为它可以实现快速验证
目前不可行的识别和实验设计,例如绘制多个区域的压力场
标准光学纹影成像在 2D 和 3D 超声压力方面有着悠久的历史。
场测绘,但传统上是使用复杂且昂贵的高速光学装置来应用
该项目提出的方法和设备具有有限的视野、有限的便携性和高成本。
相反,基于一种称为背景定向纹影 (BOS) 成像的新型纹影技术,并且在其
最简单的形式只需使用水箱、平板电脑和网络摄像头即可实现。本质上,BOS 进行交易。
用于更复杂计算的复杂光学装置,这是一种更便宜的商品。
该项目的核心创新是使用 BOS 成像来定量绘制连续波 HIFU
第一个目标是开发用于 BOS 成像和断层扫描的便携式硬件,
可以在原位与各种 HIFU 系统一起使用第二个目标是开发数学。
HIFU 光束映射的 BOS 成像过程的理论基础,不同于传统的
BOS 成像,因为底层折射率场不是静态的。第三个目标是开发采集。
和重建方法,产生定量的空间分辨压力场图,并验证这些
通过开发,针对最先进的 HIFU 系统的模拟和光学水听器测量绘制地图。
并传播用于定量 2D 和 3D HIFU 波束映射的 BOS 硬件、理论和方法,这
开发项目将带来快速、简单和强大的设备,可以被广泛采用甚至发货
与每个临床 HIFU 系统一起进行定期质量保证和曝光测量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William A Grissom其他文献
William A Grissom的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William A Grissom', 18)}}的其他基金
Discovery and Applied Research for Technological Innovations to ImproveHuman Health
改善人类健康的技术创新的发现和应用研究
- 批准号:
10841979 - 财政年份:2023
- 资助金额:
$ 23.57万 - 项目类别:
Gradient-Free Quantitative MRI using a Combination of B1-Selective Excitation and Fingerprinting
结合使用 B1 选择性激励和指纹识别的无梯度定量 MRI
- 批准号:
10630200 - 财政年份:2022
- 资助金额:
$ 23.57万 - 项目类别:
Gradient-Free Quantitative MRI using a Combination of B1-Selective Excitation and Fingerprinting
结合使用 B1 选择性激励和指纹识别的无梯度定量 MRI
- 批准号:
10390516 - 财政年份:2022
- 资助金额:
$ 23.57万 - 项目类别:
Three-Dimensional Patient-Tailored RF Pulses for Spin Echo Neuroimaging at 7 T
用于 7 T 自旋回波神经成像的三维患者定制射频脉冲
- 批准号:
8833279 - 财政年份:2014
- 资助金额:
$ 23.57万 - 项目类别:
Three-Dimensional Patient-Tailored RF Pulses for Spin Echo Neuroimaging at 7 T
用于 7 T 自旋回波神经成像的三维患者定制射频脉冲
- 批准号:
9040161 - 财政年份:2014
- 资助金额:
$ 23.57万 - 项目类别:
Array-Compressed Parallel Transmission for High Resolution Neuroimaging at 7T
用于 7T 高分辨率神经成像的阵列压缩并行传输
- 批准号:
10093035 - 财政年份:2014
- 资助金额:
$ 23.57万 - 项目类别:
Three-Dimensional Patient-Tailored RF Pulses for Spin Echo Neuroimaging at 7 T
用于 7 T 自旋回波神经成像的三维患者定制射频脉冲
- 批准号:
8697577 - 财政年份:2014
- 资助金额:
$ 23.57万 - 项目类别:
相似国自然基金
鼓泡床密相区温度、颗粒浓度与气泡分布的二维同步声学双参数成像
- 批准号:62301355
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
声学拓扑安德森绝缘体拓扑特性研究
- 批准号:12304486
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
轨道模式依赖的声学拓扑态及其应用研究
- 批准号:12304492
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于深度学习的右心声学造影PFO-RLS和P-RLS智能诊断模型的构建
- 批准号:82302198
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
声学和弹性分层介质反散射问题的理论与数值算法
- 批准号:12371422
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
相似海外基金
Wearable Electrostrictive Row-Column Ultrasound Arrays for Longitudinal Echocardiography
用于纵向超声心动图的可穿戴电致伸缩行列超声阵列
- 批准号:
10610780 - 财政年份:2022
- 资助金额:
$ 23.57万 - 项目类别:
An Ionizing Radiation Acoustics Imaging (iRAI) Approach for guided Flash Radiotherapy
用于引导闪光放射治疗的电离辐射声学成像 (iRAI) 方法
- 批准号:
10707124 - 财政年份:2022
- 资助金额:
$ 23.57万 - 项目类别:
A novel transducer clip-on device to enable accessible and functional 3D ultrasound imaging
一种新型换能器夹式装置,可实现易于使用且功能齐全的 3D 超声成像
- 批准号:
10708132 - 财政年份:2022
- 资助金额:
$ 23.57万 - 项目类别:
A novel transducer clip-on device to enable accessible and functional 3D ultrasound imaging
一种新型换能器夹式装置,可实现易于使用且功能齐全的 3D 超声成像
- 批准号:
10587466 - 财政年份:2022
- 资助金额:
$ 23.57万 - 项目类别: