Fast Methods for Mapping Focused Ultrasound Pressure Fields
绘制聚焦超声压力场的快速方法
基本信息
- 批准号:9388181
- 负责人:
- 金额:$ 23.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:3D ultrasoundAcousticsAddressAdoptedBenchmarkingBlood - brain barrier anatomyClinicClinicalCommunicationComputer softwareConeDevelopmentDevicesDictionaryDimensionsDrug Delivery SystemsEquationEquilibriumExperimental DesignsFibroid TumorFocused UltrasoundFocused Ultrasound TherapyGeometryGoalsGoldHourImageImaging DeviceIn SituLasersLightLiquid substanceLocationMagnetic Resonance ImagingMapsMeasurementMeasuresMethodsModalityModelingMorphologic artifactsMotionNeedlesOptical MethodsOpticsPatternPrivatizationProcessProtocols documentationRadiationRecording of previous eventsRefractive IndicesResearchResolutionSafetySamplingScanningShapesShipsSpeedSystemTabletsTechniquesTechnologyTherapeuticTimeTransducersTranslatingUltrasonic TransducerUltrasonographyValidationVisible RadiationWaterWorkbasebrain surgerycostdensitydesigndosimetryflexibilityimaging systeminnovationinstrumentmathematical modelmathematical theoryportabilitypre-clinicalpressurequality assurancereconstructionresearch and developmentsimulationspatiotemporaltheoriestomographytooltreatment planningtumor
项目摘要
Project Summary
The goal of this R21 EBRG project is to develop new optical methods to map high intensity focused ultrasound
(HIFU) pressure fields. The methods would enable simple, fast, and low-cost in situ HIFU beam measurements,
which are needed for quality assurance and safety in the clinic, and to accelerate the pace of research and
development of new HIFU applications and technologies.
An ideal beam mapping instrument would be low cost, capable of rapidly measuring relevant acoustic
parameters of clinical HIFU systems in situ between treatments, and usable by nontechnical experts. Needle
hydrophones are currently the gold standard tool for mapping HIFU pressure fields, but are poorly suited to
the measurement task since they sample only one spatial location at a time, and most can only measure sub-
therapeutic pressures. They can be translated in a water tank by a motion stage to produce spatially-resolved
pressure maps, but this is a slow and cumbersome measurement that can take several hours to complete. The
techniques proposed in this application could meet this clinical need and also provide a fast, flexible, and spatially-
resolved beam mapping instrument that would be invaluable for HIFU research since it would enable rapid val-
idation and experimental designs that are currently infeasible, such as mapping pressure fields across multiple
experimental variables. Standard optical schlieren imaging has a long history in 2D and 3D ultrasound pressure
field mapping but has conventionally been applied using sophisticated and expensive high-speed optical setups
with limited field-of-view, limited portability and high cost. The methods and devices proposed in this project are
instead based on a newer schlieren technique called background oriented schlieren (BOS) imaging, and in their
simplest form can be implemented using just a water tank, a tablet PC and a webcam. In essence, BOS trades
the sophisticated optical setup for more sophisticated computation, which is a much cheaper commodity.
The central innovation in this project is to use BOS imaging to quantitatively map continuous-wave HIFU
pressure fields in 2D and 3D. The first Aim is to develop portable hardware for BOS imaging and tomography,
that can be used with a wide variety of HIFU systems in situ. The second Aim is to develop the mathematical
theory underlying the BOS image formation process for HIFU beam mapping, which is different from conventional
BOS imaging since the underlying refractive index field is not static. The third Aim is to develop acquisition
and reconstruction methods that produce quantitative spatially-resolved pressure field maps, and validate those
maps against simulations and optical hydrophone measurements of state-of-the-art HIFU systems. By developing
and disseminating BOS hardware, theory, and methods for quantitative 2D and 3D HIFU beam mapping, this
development project will lead to fast, simple and robust devices that can be widely adopted and even shipped
with each clinical HIFU system for regular quality assurance and exposimetry measurements.
项目摘要
这个R21 EBRG项目的目标是开发新的光学方法来绘制高强度的超声
(HIFU)压力场。这些方法将实现简单,快速和低成本的原位hifu梁测量值,
诊所中质量保证和安全所需的需要,并加速研究的步伐和
开发新的HIFU应用程序和技术。
理想的光束映射仪器将是低成本,能够快速测量相关的声学
治疗之间的临床HIFU系统的参数,而非技术专家可用。
当前,言语是用于绘制HIFU压力场的黄金标准工具,但适合于
测量任务是因为它们一次仅采样一个空间位置,并且大多数人只能测量子 -
治疗压力。它们可以通过运动阶段在水箱中翻译以产生空间分辨
压力图,但这是一个缓慢而繁琐的测量,可能需要几个小时才能完成。这
本应用程序中提出的技术可以满足这种临床需求,还可以在空间上提供快速,灵活和空间
已解决的光束映射仪器对于HIFU研究将是无价的
当前不可行的标识和实验设计,例如跨多个绘制压力场
实验变量。标准光学Schlieren成像在2D和3D超声压力中具有悠久的历史
领域映射,但通常使用精致且昂贵的高速光学设置应用
有限的视野,有限的便携性和高成本。该项目中提出的方法和设备是
取而代之的是基于一种称为背景的Schlieren(BOS)成像的较新的Schlieren技术,并在其中
最简单的表格只能使用水箱,平板电脑和网络摄像头实现。本质上,BOS交易
用于更复杂的计算的复杂光学设置,这是一种便宜得多的商品。
该项目的中心创新是使用BOS成像来定量映射连续波Hifu
2D和3D的压力领域。第一个目的是开发用于BOS成像和层析成像的便携式硬件,
可以与多种HIFU系统原位一起使用。第二个目的是发展数学
HIFU光束映射的BOS图像形成过程的理论,这与常规的不同
BOS成像,因为基本的折射率场不是静态的。第三个目的是发展收购
以及产生定量的空间分辨压力场图的重建方法,并验证这些方法
针对最先进的HIFU系统的模拟和光学水文测量的地图。通过发展
并传播定量2D和3D HIFU光束映射的BOS硬件,理论和方法
开发项目将导致快速,简单且健壮的设备,这些设备可以广泛采用甚至发货
每个临床HIFU系统都用于定期质量保证和计量测量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William A Grissom其他文献
William A Grissom的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William A Grissom', 18)}}的其他基金
Discovery and Applied Research for Technological Innovations to ImproveHuman Health
改善人类健康的技术创新的发现和应用研究
- 批准号:
10841979 - 财政年份:2023
- 资助金额:
$ 23.57万 - 项目类别:
Gradient-Free Quantitative MRI using a Combination of B1-Selective Excitation and Fingerprinting
结合使用 B1 选择性激励和指纹识别的无梯度定量 MRI
- 批准号:
10630200 - 财政年份:2022
- 资助金额:
$ 23.57万 - 项目类别:
Gradient-Free Quantitative MRI using a Combination of B1-Selective Excitation and Fingerprinting
结合使用 B1 选择性激励和指纹识别的无梯度定量 MRI
- 批准号:
10390516 - 财政年份:2022
- 资助金额:
$ 23.57万 - 项目类别:
Three-Dimensional Patient-Tailored RF Pulses for Spin Echo Neuroimaging at 7 T
用于 7 T 自旋回波神经成像的三维患者定制射频脉冲
- 批准号:
8833279 - 财政年份:2014
- 资助金额:
$ 23.57万 - 项目类别:
Three-Dimensional Patient-Tailored RF Pulses for Spin Echo Neuroimaging at 7 T
用于 7 T 自旋回波神经成像的三维患者定制射频脉冲
- 批准号:
9040161 - 财政年份:2014
- 资助金额:
$ 23.57万 - 项目类别:
Array-Compressed Parallel Transmission for High Resolution Neuroimaging at 7T
用于 7T 高分辨率神经成像的阵列压缩并行传输
- 批准号:
10093035 - 财政年份:2014
- 资助金额:
$ 23.57万 - 项目类别:
Three-Dimensional Patient-Tailored RF Pulses for Spin Echo Neuroimaging at 7 T
用于 7 T 自旋回波神经成像的三维患者定制射频脉冲
- 批准号:
8697577 - 财政年份:2014
- 资助金额:
$ 23.57万 - 项目类别:
相似国自然基金
航天低温推进剂加注系统气液状态声学监测技术研究
- 批准号:62373276
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于声学原位测试的金属表面液滴弹跳次数仿生调控
- 批准号:52350039
- 批准年份:2023
- 资助金额:80 万元
- 项目类别:专项基金项目
声学信号调控语音反馈脑网络在腭裂代偿语音康复中的机制研究
- 批准号:82302874
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非厄米声学晶格系统中的拓扑物理研究
- 批准号:12374418
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
海洋声学功能材料发展战略研究
- 批准号:52342304
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:专项项目
相似海外基金
Wearable Electrostrictive Row-Column Ultrasound Arrays for Longitudinal Echocardiography
用于纵向超声心动图的可穿戴电致伸缩行列超声阵列
- 批准号:
10610780 - 财政年份:2022
- 资助金额:
$ 23.57万 - 项目类别:
An Ionizing Radiation Acoustics Imaging (iRAI) Approach for guided Flash Radiotherapy
用于引导闪光放射治疗的电离辐射声学成像 (iRAI) 方法
- 批准号:
10707124 - 财政年份:2022
- 资助金额:
$ 23.57万 - 项目类别:
A novel transducer clip-on device to enable accessible and functional 3D ultrasound imaging
一种新型换能器夹式装置,可实现易于使用且功能齐全的 3D 超声成像
- 批准号:
10708132 - 财政年份:2022
- 资助金额:
$ 23.57万 - 项目类别:
A novel transducer clip-on device to enable accessible and functional 3D ultrasound imaging
一种新型换能器夹式装置,可实现易于使用且功能齐全的 3D 超声成像
- 批准号:
10587466 - 财政年份:2022
- 资助金额:
$ 23.57万 - 项目类别: