STRUCTURE AND MECHANISM OF A POLYMODAL TRP ION CHANNEL
多峰TRP离子通道的结构和机制
基本信息
- 批准号:9381325
- 负责人:
- 金额:$ 33.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-06-15 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAgonistAreaBiochemicalBiological AssayBiological ProcessBiologyBiophysicsBlood VesselsCalciumCalcium SignalingChemicalsClinicalComplementComplexCryoelectron MicroscopyCrystallizationDataDetergentsDevelopmentDiseaseDrug TargetingDrug effect disorderElectrophysiology (science)FoundationsFunctional disorderGoalsHomologous GeneHypertensionInflammationInheritedIntegral Membrane ProteinInterventionIon ChannelIonsLengthLigandsMalignant NeoplasmsMembraneMembrane LipidsMembrane ProteinsMethodsMolecularMutationNerve DegenerationNeurobiologyNociceptionNon-Insulin-Dependent Diabetes MellitusObesityOsmoregulationPainPathologicPermeabilityPhosphatidylinositol 4,5-DiphosphatePhosphatidylinositolsPhysiologicalPhysiological ProcessesPhysiologyPlayPositioning AttributePropertyRegulationResearchResolutionRoentgen RaysRoleSensorySignal TransductionSite-Directed MutagenesisStimulusStructural ProteinStructureTemperatureTherapeutic InterventionThermogenesisWorkX ray diffraction analysisX-Ray CrystallographyX-Ray Diffractionchronic paindesigndrug discoveryhigh dimensionalityhuman diseaseinsightmechanical forcemembernervous system disordernovelnovel therapeuticsparticlepatch clampreceptorscreeningskeletal dysplasiastructural biologythree dimensional structurevoltage
项目摘要
Structure and Mechanism of a Polymodal TRP Ion Channel Transient receptor potential (TRP) ion channels are crucial for sensory transduction and cellular signaling, and TRP channel dysfunction is associated with a vast array of hereditary and acquired diseases including cancer, chronic pain, hypertension, and neurological disorders. Because of their central roles in physiology and pathophysiology, TRP channels have been intensively studied and are among the most aggressively pursued drug targets. However, advances in our understanding of TRP channel function and therapeutic interventions
have been hindered by a lack of three-dimensional high-resolution structural information for most TRP channels. Our long-term goal is to develop structural and biochemical approaches to elucidate molecular mechanisms of TRP channels at the atomic level. By developing new methods to systematically evaluate heterologous expression, purification, and optimization of TRP channel homologs, we have recently crystallized a nearly full-length functional channel and obtained preliminary X-ray diffraction to 4.8 Å resolution. With this technical breakthrough and further optimization, we are now able to combine X-ray crystallography, single-particle cryo-electron microscopy (cryo-EM), patch-clamp electrophysiology, and site-directed mutagenesis to address fundamental molecular mechanisms. Specifically, we aim to determine high-resolution X-ray and cryo-EM structures of the channel bound with agonists or antagonists, and in complex with
membrane lipids that regulate channel activity, and to dissect the underlying mechanisms of disease-associated mutations. Our proposed work will provide X-ray and cryo-EM structures of a TRP channel in multiple functional states and uncover structural and molecular mechanisms. In doing so, we will not only bring fundamental insights into TRP channel function, but also establish a foundation for rational design of new therapeutics for the treatment of many channel-associated diseases.
多聚trp离子通道瞬态接收器电位(TRP)离子通道的结构和机制对于感觉转导和细胞信号传导至关重要,而TRP通道功能障碍与众多遗传性疾病和获得性疾病有关,包括癌症,慢性疼痛,高血压,高血压,高血压和神经系统疾病。由于它们在生理学和病理生理学中的主要作用,TRP通道一直是研究的,并且是最积极的药物靶标之一。但是,我们对TRP渠道功能和治疗干预措施的理解的进步
对于大多数TRP通道缺乏三维高分辨率结构信息,这受到了阻碍。我们的长期目标是开发结构和生化方法,以阐明原子水平的TRP通道的分子机制。通过开发新方法来系统地评估TRP通道同源物的异源表达,纯化和优化,我们最近结晶了几乎全长的功能通道,并获得了初步的X射线衍射至4.8Å分辨率。通过这种技术突破和进一步的优化,我们现在能够将X射线晶体学,单粒子冷冻电子显微镜(Cryo-EM),斑块钳电生理学和定向诱变结合在一起,以解决基本分子机制。具体而言,我们旨在确定与激动剂或拮抗剂结合的通道的高分辨率X射线和冷冻EM结构,并与
调节通道活性并剖析疾病相关突变的潜在机制的膜脂质。我们提出的工作将在多个功能状态以及揭示结构和分子机制中提供TRP通道的X射线和冷冻EM结构。这样一来,我们不仅会将基本见解带入TRP渠道功能,还为合理设计的新疗法建立了基础,以治疗许多渠道相关疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peng Yuan其他文献
Peng Yuan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peng Yuan', 18)}}的其他基金
Structural Mechanism for Gating of Mechanosensitive Channels
机械敏感通道门控的结构机制
- 批准号:
10688147 - 财政年份:2022
- 资助金额:
$ 33.36万 - 项目类别:
Structural Mechanism for Gating of Mechanosensitive Channels
机械敏感通道门控的结构机制
- 批准号:
10818026 - 财政年份:2022
- 资助金额:
$ 33.36万 - 项目类别:
Antibiotic-sparing strategies targeting outer membrane ushers in Gram-negative bacterial pathogens
针对外膜的抗生素节约策略迎来革兰氏阴性细菌病原体
- 批准号:
10352470 - 财政年份:2021
- 资助金额:
$ 33.36万 - 项目类别:
Antibiotic-sparing strategies targeting outer membrane ushers in Gram-negative bacterial pathogens
针对外膜的抗生素节约策略迎来革兰氏阴性细菌病原体
- 批准号:
10577809 - 财政年份:2021
- 资助金额:
$ 33.36万 - 项目类别:
Antibiotic-sparing strategies targeting outer membrane ushers in Gram-negative bacterial pathogens
针对外膜的抗生素节约策略迎来革兰氏阴性细菌病原体
- 批准号:
10162828 - 财政年份:2021
- 资助金额:
$ 33.36万 - 项目类别:
STRUCTURE AND MECHANISM OF A POLYMODAL TRP ION CHANNEL
多峰TRP离子通道的结构和机制
- 批准号:
9927711 - 财政年份:2017
- 资助金额:
$ 33.36万 - 项目类别:
相似国自然基金
内源激动剂ArA靶向TMEM175蛋白缓解帕金森病症的分子机制研究
- 批准号:32300565
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Adrb2激动剂在改善呼吸机相关性膈肌功能障碍中的作用与机制研究
- 批准号:82372196
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
新型IL2Rβγ激动剂逐级控释联合放疗对抗三阴性乳腺癌的作用及机制研究
- 批准号:82303819
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于OSMAC-GNPS分析策略的蚂蚱内生真菌Aspergillus sp.中新颖泛PPAR激动剂的发现及治疗NASH研究
- 批准号:82304340
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
探究FSP1激动剂在治疗肾缺血再灌注损伤中的分子机理与应用
- 批准号:82304600
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Illumination of TAAR2 Location, Function and Regulators
TAAR2 位置、功能和调节器的阐明
- 批准号:
10666759 - 财政年份:2023
- 资助金额:
$ 33.36万 - 项目类别:
Structurally engineered furan fatty acids for the treatment of dyslipidemia and cardiovascular disease
结构工程呋喃脂肪酸用于治疗血脂异常和心血管疾病
- 批准号:
10603408 - 财政年份:2023
- 资助金额:
$ 33.36万 - 项目类别:
Developing tools for calcium imaging in ITPR2-linked liver pathogenesis
开发 ITPR2 相关肝脏发病机制的钙成像工具
- 批准号:
10727998 - 财政年份:2023
- 资助金额:
$ 33.36万 - 项目类别:
Isolating the role of endogenous mu-opioid activity in the VTA during natural reward
分离自然奖赏期间 VTA 中内源性 mu-阿片活性的作用
- 批准号:
10749349 - 财政年份:2023
- 资助金额:
$ 33.36万 - 项目类别:
Mentoring the next generation of researchers at the intersection of opioid use disorder and chronic pain
指导下一代研究人员研究阿片类药物使用障碍和慢性疼痛的交叉点
- 批准号:
10663642 - 财政年份:2023
- 资助金额:
$ 33.36万 - 项目类别: