Label-free, high resolution, functional, two-photon imaging for non-invasive early cancer detection
用于非侵入性早期癌症检测的无标记、高分辨率、功能性双光子成像
基本信息
- 批准号:9811585
- 负责人:
- 金额:$ 7.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsBenignBiological MarkersBiomechanicsBiometryBiopsyBladderCancer DetectionCancer DiagnosticsCancer PatientCarcinomaCellsCervicalCervix UteriCessation of lifeCharacteristicsClinicalClinical TreatmentCollagenCollagen FiberColonColposcopyData SetDetectionDeveloped CountriesDeveloping CountriesDevelopmentDiagnosisDiagnosticDiagnostic ImagingDiscriminant AnalysisDiseaseEarly DiagnosisEpithelialEpitheliumEsophagusEvaluationFiberFluorescenceFunctional ImagingFutureGenerationsGoalsGoldHandHistopathologyHumanHuman Papilloma Virus VaccineHysterectomyImageImage AnalysisImageryIncidenceInflammationLabelLesionLoop electrosurgical excision procedureMalignant NeoplasmsMeasurementMetabolicMetaplasiaMethodsMitochondriaMorphologyNADHNatureNuclearOpticsOral cavityOrganOutcomeOxidation-ReductionPatientsPerformancePremalignantProcessPropertyProtocols documentationReportingResolutionScreening for cancerSignal TransductionSpecificitySpecimenStructureTestingTimeTissue imagingTissuesTranslationsVariantbasecancer diagnosisclinical Diagnosiscostcrosslinkdiagnosis standardexperiencefluorescence imaginghuman imagingimaging platformimaging systemimprovedin vivoin vivo imagingindexinginnovationinsightmicroscopic imagingnon-invasive imagingnovel therapeuticspsychologicquantitative imagingsecond harmonicsecond harmonic generation imagingskin lesiontissue biomarkerstwo-photon
项目摘要
PROJECT SUMMARY
Established methods for early cancer detection rely on simple tissue visualization methods, accompanied by
biopsy and histopathological evaluation, which is primarily based on morphological tissue features. These
approaches are inaccurate or inefficient. Our long-term objective is to transform pre- and early epithelial cancer
diagnosis through the use of functional metabolic, morphological and biomechanical tissue biomarkers that are
extracted non-invasively, automatically and in near real time from fiber-probe-based endogenous two-photon
images. Endogenous two-photon imaging is uniquely capable to provide label-free, functional, high resolution
tissue images. In this proposal, we aim to establish and validate such measurements and biomarkers for the
detection of human cervical pre-cancers using freshly excised tissues. The cervix is an ideal organ for developing
and testing our approach as it relaxes some of the size limitations presented for endoscopic applications,
enabling us to focus on demonstrating the principles of this innovative platform. In addition, we expect that our
proposed methods will enable significant improvements in the specificity of detection of cervical pre-cancers. To
achieve our goals, we will acquire images from fifty freshly excised human cervical tissue specimens from
patients undergoing colposcopy, loop electrosurgical excision procedure, or hysterectomy. We will acquire
endogenous two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) images and
extract signals attributed to NADH, FAD, and collagen. We will process these images using methods we
developed to assess: a) the depth-dependent optical redox ratio, mitochondrial organization and nuclear to
cytoplasmic ratio variations from FAD and NADH TPEF images of the epithelium, and b) the collagen fiber
organization and crosslinking from SHG and TPEF images of the stroma. We will use discriminant analysis to
develop algorithms that include the optimal combination of the extracted optical parameters to distinguish high-
grade from non-high grade cervical lesions, relying on histopathology as the gold standard. Our algorithms will
be entirely automated and fast and will yield a diagnosis based on functional tissue characteristics. Thus, we
expect that results from this study will motivate the development of a probe-based 2P imaging system for clinical
in vivo imaging translation to enable real-time, highly accurate detection of cervical pre-cancerous lesions.
Ultimately, we anticipate that probe-based 2P imaging will transform early cancer diagnosis for a wide range of
tissues, such as the oral cavity, the esophagus, the colon, and the bladder.
项目摘要
早期癌症检测的既定方法取决于简单的组织可视化方法,并伴随
活检和组织病理学评估主要基于形态组织特征。这些
方法不准确或效率低下。我们的长期目标是改变前和早期上皮癌
通过使用功能代谢,形态学和生物力学组织生物标志物的诊断
从基于纤维探针的内源性两光子中,非侵入性,自动和几乎实时提取
图像。内源性两光子成像具有独特的能力,能够提供无标签,功能性高分辨率
组织图像。在此提案中,我们旨在建立和验证此类测量和生物标志物
使用新鲜切除的组织检测人宫颈前癌。子宫颈是发展的理想器官
并测试我们的方法,因为它放松了内窥镜应用的一些尺寸限制,
使我们能够专注于展示这个创新平台的原理。此外,我们希望我们的
提出的方法将使宫颈前癌检测的特异性有显着改善。到
实现我们的目标,我们将从五十个新鲜切除的人类宫颈组织标本中获取图像
进行阴道镜检查,循环电外科切除手术或子宫切除术的患者。我们将获得
内源性两光激发荧光(TPEF)和第二个谐波生成(SHG)图像,以及
提取信号归因于NADH,FAD和胶原蛋白。我们将使用方法处理这些图像
开发以评估:a)深度依赖性的光学氧化还原比,线粒体组织和核与核
上皮的FAD和NADH TPEF图像的细胞质比变化,b)胶原蛋白纤维
基质的SHG和TPEF图像的组织和交联。我们将使用判别分析进行
开发算法,包括提取的光学参数的最佳组合,以区分高
依靠组织病理学作为黄金标准的非高级宫颈病变的等级。我们的算法会
完全自动化和快速,并将基于功能组织特征产生诊断。因此,我们
期望这项研究的结果将激发基于探针的2p成像系统的开发
体内成像翻译以实现实时,高度准确的颈椎前病变。
最终,我们预计基于探针的2p成像将改变早期的癌症诊断
组织,例如口腔,食道,结肠和膀胱。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
IRENE GEORGAKOUDI其他文献
IRENE GEORGAKOUDI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('IRENE GEORGAKOUDI', 18)}}的其他基金
Development of a novel platform for label-free monitoring of CAR-T cell interactions in vivo
开发用于体内 CAR-T 细胞相互作用的无标记监测的新型平台
- 批准号:
10594112 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Safety assessments of tissue irradiation with near infrared fs pulses for multi-photon imaging applications
用于多光子成像应用的近红外飞秒脉冲组织照射的安全性评估
- 批准号:
10531610 - 财政年份:2021
- 资助金额:
$ 7.5万 - 项目类别:
Safety assessments of tissue irradiation with near infrared fs pulses for multi-photon imaging applications
用于多光子成像应用的近红外飞秒脉冲组织照射的安全评估
- 批准号:
10363397 - 财政年份:2021
- 资助金额:
$ 7.5万 - 项目类别:
Polarized Light Laparascopy of Occult Cancer Metastases
隐匿性癌症转移的偏振光腹腔镜检查
- 批准号:
9387674 - 财政年份:2017
- 资助金额:
$ 7.5万 - 项目类别:
Acquisition of Leica confocal/multiphoton microscope
购买徕卡共焦/多光子显微镜
- 批准号:
9075571 - 财政年份:2016
- 资助金额:
$ 7.5万 - 项目类别:
Endogenous optical biomarkers of adipose tissue function
脂肪组织功能的内源性光学生物标志物
- 批准号:
9052761 - 财政年份:2015
- 资助金额:
$ 7.5万 - 项目类别:
相似国自然基金
拷贝数突变致良性癫痫伴中央颞区棘波语言障碍的认知心理学及神经影 像学研究
- 批准号:82371201
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
LPA通过LPAR1和3亚型调控良性前列腺增生纤维样改变的机制研究
- 批准号:82370773
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
线粒膜融合蛋白Mfn1介导AR/Mfn1/PSA途径调控良性前列腺增生及植物源miR-5338靶向干预的研究
- 批准号:82374131
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
番茄红素对双酚A暴露相关良性前列腺增生的影响及免疫调控机制研究
- 批准号:82304142
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
I-Afadin调控三细胞间连接开闭在良性输尿管狭窄中的作用及其机制研究
- 批准号:82370691
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Personalized risk assessment in Neurofibromatosis Type 1
1 型神经纤维瘤病的个性化风险评估
- 批准号:
10621489 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
A miniaturized neural network enabled nanoplasmonic spectroscopy platform for label-free cancer detection in biofluids
微型神经网络支持纳米等离子体光谱平台,用于生物流体中的无标记癌症检测
- 批准号:
10658204 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Molecular biomarkers of future aggressive behavior in pituitary tumors
垂体瘤未来攻击行为的分子生物标志物
- 批准号:
10650948 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Early detection and risk of head and neck cancer through immune based spatial omics
通过基于免疫的空间组学早期发现头颈癌并降低风险
- 批准号:
10766467 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Infrared Spectroscopic Imaging and Machine Learning for Risk Stratification of Oral Epithelial Dysplasia
红外光谱成像和机器学习用于口腔上皮发育不良的风险分层
- 批准号:
10606086 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别: