Role of nonsense mediated RNA decay in pancreatic cancer

无义介导的RNA衰变在胰腺癌中的作用

基本信息

项目摘要

Nonsense mediated RNA decay (NMD) is a mechanism to rapidly degrade select mRNAs. Recent studies have found that the UPF1 gene, required for NMD, is strikingly mutated and inactivated in >80% of adenosquamous pancreatic cancer (ASPC), a particularly aggressive form of pancreatic cancer. We have determined that UPF1 mutations in pancreatic cancer result in decreased UPF1 expression. Other mutations recently reported to inactivate NMD are found in pancreatic ductal adenocarcinoma, and we have reported that many of the stresses commonly found in pancreatic cancer repress NMD activity. NMD inhibition promotes the growth of transformed cells in soft agar, subcutaneous explants, and in an orthotopic pancreatic transplant model. Our overall goal is to better understand how NMD inhibition augments tumor growth and explore how we can exploit NMD inhibition for therapeutic gain in pancreatic cancer. RNA stability screens, RNAseq, and metabolomics screens have identified Notch signaling and Glycolysis as NMD regulated pathways. Both Notch signaling and Glycolysis play an important role in pancreatic cancer in general, and recent pancreatic cancer molecular classification studies indicate that these two pathways are particularly active in ASPC, where NMD is typically genetically inactivated. Importantly these pathways can also be targeted. In Aim 1 we will identify the mechanism and significance of NMD inhibition on Notch activation in pancreatic cancer. Based on our preliminary data we hypothesize that reduced NMD inhibition expression stabilizes Notch ligands and receptors, and the activation of Notch signaling represses e-cadherin expression to play a key role in metastases and chemo-resistance. However we also hypothesize that NMD inhibited pancreatic cancers will be particularly susceptible to Notch inhibitors. In Aim 2 we will determine how reduced NMD inhibition regulates metabolic pathways and exploit this for therapeutic gain. Based on our preliminary data, we hypothesize that NMD inhibition stabilizes alternatively spliced transcripts encoding members of the mitochondrial respiration system, and this activates glycolysis and the pentose phosphate shunt. The activation of these pathways should render tumors with UPF1 mutations more sensitive to clinically available mitochondrial inhibitors and other metabolic inhibitors, as indicated by preliminary focused shRNA synthetic lethality screens. For both Aims we will use a variety of in vitro cell biology, biochemical, and molecular techniques. We will validate our in vitro findings with unique ASPC tissue arrays, as well as a novel genetically engineered mouse in which we can temporally down-regulate UPF1 expression in pancreas, and can thus faithfully model the consequences of UPF1 mutations found in ASPC.
废话介导的RNA衰减(NMD)是快速降解精选mRNA的机制。最近的研究 已经发现NMD所需的UPF1基因在> 80%的 腺泡胰腺癌(ASPC)是胰腺癌的一种特别激进的形式。我们有 确定胰腺癌中的UPF1突变导致UPF1表达降低。其他突变 最近报道的灭活NMD在胰腺导管腺癌中发现,我们已经报道说 胰腺癌抑制NMD活性中常见的许多应力。 NMD抑制促进 软琼脂,皮下外植体和原位胰腺移植中转化细胞的生长 模型。我们的总体目标是更好地了解NMD抑制如何增加肿瘤的生长并探索如何 我们可以利用NMD抑制胰腺癌的治疗增加。 RNA稳定性筛选,RNASEQ和代谢组学筛查已将Notch信号和糖酵解确定为 NMD调控途径。 Notch信号传导和糖酵解在胰腺癌中都起着重要作用 一般和最近的胰腺癌分子分类研究表明,这两种途径是 在ASPC中特别活跃,其中NMD通常在遗传上灭活。重要的是这些途径可以 也是针对的。在AIM 1中,我们将确定NMD抑制Notch的机制和意义 胰腺癌的激活。根据我们的初步数据,我们假设减少了NMD抑制作用 表达稳定了Notch配体和受体,Notch信号的激活抑制E-钙粘蛋白 表达在转移和化学抗性中起关键作用。但是我们还假设NMD 抑制胰腺癌将特别容易受到缺口抑制剂的影响。在AIM 2中,我们将确定如何 NMD抑制作用减少可调节代谢途径并利用它以获得治疗性增益。基于我们 初步数据,我们假设NMD抑制稳定了编码的剪接成绩单 线粒体呼吸系统的成员,这激活了糖酵解和五肽磷酸盐 分流。这些途径的激活应使UPF1突变对临床更敏感 可用的线粒体抑制剂和其他代谢抑制剂,如初步聚焦shRNA所示 合成致死性筛选。对于这两个目标,我们都将使用各种体外细胞生物学,生化和 分子技术。我们将使用独特的ASPC组织阵列来验证我们的体外发现以及一种新颖 基因工程的小鼠,我们可以在胰腺中暂时下调UPF1的表达,而 因此,可以忠实地对ASPC中的UPF1突变的后果进行建模。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MARK Reid PHILIPS其他文献

MARK Reid PHILIPS的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MARK Reid PHILIPS', 18)}}的其他基金

FASEB SRC: Structure and Function of Small GTPases
FASEB SRC:小 GTP 酶的结构和功能
  • 批准号:
    10463260
  • 财政年份:
    2022
  • 资助金额:
    $ 44.37万
  • 项目类别:
Differential function and tumor vulnerabilities revealed by RAS membrane trafficking
RAS 膜运输揭示的差异功能和肿瘤脆弱性
  • 批准号:
    10468873
  • 财政年份:
    2020
  • 资助金额:
    $ 44.37万
  • 项目类别:
Medical Scientist Research Service Award
医学科学家研究服务奖
  • 批准号:
    10198956
  • 财政年份:
    2020
  • 资助金额:
    $ 44.37万
  • 项目类别:
Regulation of KRAS Trafficking and Signaling by GPR31
GPR31 对 KRAS 贩运和信号传输的监管
  • 批准号:
    10047185
  • 财政年份:
    2020
  • 资助金额:
    $ 44.37万
  • 项目类别:
Differential function and tumor vulnerabilities revealed by RAS membrane trafficking
RAS 膜运输揭示的差异功能和肿瘤脆弱性
  • 批准号:
    10688011
  • 财政年份:
    2020
  • 资助金额:
    $ 44.37万
  • 项目类别:
Medical Scientist Research Service Award
医学科学家研究服务奖
  • 批准号:
    10417095
  • 财政年份:
    2020
  • 资助金额:
    $ 44.37万
  • 项目类别:
Differential function and tumor vulnerabilities revealed by RAS membrane trafficking
RAS 膜运输揭示的差异功能和肿瘤脆弱性
  • 批准号:
    10237382
  • 财政年份:
    2020
  • 资助金额:
    $ 44.37万
  • 项目类别:
Differential function and tumor vulnerabilities revealed by RAS membrane trafficking
RAS 膜运输揭示的差异功能和肿瘤脆弱性
  • 批准号:
    10053541
  • 财政年份:
    2020
  • 资助金额:
    $ 44.37万
  • 项目类别:
Role of nonsense mediated RNA decay in pancreatic cancer
无义介导的RNA衰变在胰腺癌中的作用
  • 批准号:
    10229380
  • 财政年份:
    2018
  • 资助金额:
    $ 44.37万
  • 项目类别:
Role of nonsense mediated RNA decay in pancreatic cancer
无义介导的RNA衰变在胰腺癌中的作用
  • 批准号:
    10410447
  • 财政年份:
    2018
  • 资助金额:
    $ 44.37万
  • 项目类别:

相似国自然基金

过氧化氢选择性催化琼脂脱硫反应机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
过氧化氢选择性催化琼脂脱硫反应机制研究
  • 批准号:
    22278173
  • 批准年份:
    2022
  • 资助金额:
    54.00 万元
  • 项目类别:
    面上项目
基于体外模拟评价的琼脂和卡拉胶调控肠道稳态机制研究
  • 批准号:
    32272326
  • 批准年份:
    2022
  • 资助金额:
    54.00 万元
  • 项目类别:
    面上项目
琼脂基Pickering乳液稳定剂的理性设计及稳定机理研究
  • 批准号:
    32201941
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于体外模拟评价的琼脂和卡拉胶调控肠道稳态机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似海外基金

Role of nonsense mediated RNA decay in pancreatic cancer
无义介导的RNA衰变在胰腺癌中的作用
  • 批准号:
    10229380
  • 财政年份:
    2018
  • 资助金额:
    $ 44.37万
  • 项目类别:
Role of nonsense mediated RNA decay in pancreatic cancer
无义介导的RNA衰变在胰腺癌中的作用
  • 批准号:
    10410447
  • 财政年份:
    2018
  • 资助金额:
    $ 44.37万
  • 项目类别:
Sphingolipid Regulation of Caspase 9 Alternative Splicing
Caspase 9 选择性剪接的鞘脂调节
  • 批准号:
    7284893
  • 财政年份:
    2006
  • 资助金额:
    $ 44.37万
  • 项目类别:
Sphingolipid Regulation of Caspase 9 Alternative Splicing
Caspase 9 选择性剪接的鞘脂调节
  • 批准号:
    7469448
  • 财政年份:
    2006
  • 资助金额:
    $ 44.37万
  • 项目类别:
Tumorigenesis by the Epstein Barr Virus
EB 病毒引起的肿瘤发生
  • 批准号:
    10696218
  • 财政年份:
    1997
  • 资助金额:
    $ 44.37万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了