Role of nonsense mediated RNA decay in pancreatic cancer

无义介导的RNA衰变在胰腺癌中的作用

基本信息

项目摘要

Nonsense mediated RNA decay (NMD) is a mechanism to rapidly degrade select mRNAs. Recent studies have found that the UPF1 gene, required for NMD, is strikingly mutated and inactivated in >80% of adenosquamous pancreatic cancer (ASPC), a particularly aggressive form of pancreatic cancer. We have determined that UPF1 mutations in pancreatic cancer result in decreased UPF1 expression. Other mutations recently reported to inactivate NMD are found in pancreatic ductal adenocarcinoma, and we have reported that many of the stresses commonly found in pancreatic cancer repress NMD activity. NMD inhibition promotes the growth of transformed cells in soft agar, subcutaneous explants, and in an orthotopic pancreatic transplant model. Our overall goal is to better understand how NMD inhibition augments tumor growth and explore how we can exploit NMD inhibition for therapeutic gain in pancreatic cancer. RNA stability screens, RNAseq, and metabolomics screens have identified Notch signaling and Glycolysis as NMD regulated pathways. Both Notch signaling and Glycolysis play an important role in pancreatic cancer in general, and recent pancreatic cancer molecular classification studies indicate that these two pathways are particularly active in ASPC, where NMD is typically genetically inactivated. Importantly these pathways can also be targeted. In Aim 1 we will identify the mechanism and significance of NMD inhibition on Notch activation in pancreatic cancer. Based on our preliminary data we hypothesize that reduced NMD inhibition expression stabilizes Notch ligands and receptors, and the activation of Notch signaling represses e-cadherin expression to play a key role in metastases and chemo-resistance. However we also hypothesize that NMD inhibited pancreatic cancers will be particularly susceptible to Notch inhibitors. In Aim 2 we will determine how reduced NMD inhibition regulates metabolic pathways and exploit this for therapeutic gain. Based on our preliminary data, we hypothesize that NMD inhibition stabilizes alternatively spliced transcripts encoding members of the mitochondrial respiration system, and this activates glycolysis and the pentose phosphate shunt. The activation of these pathways should render tumors with UPF1 mutations more sensitive to clinically available mitochondrial inhibitors and other metabolic inhibitors, as indicated by preliminary focused shRNA synthetic lethality screens. For both Aims we will use a variety of in vitro cell biology, biochemical, and molecular techniques. We will validate our in vitro findings with unique ASPC tissue arrays, as well as a novel genetically engineered mouse in which we can temporally down-regulate UPF1 expression in pancreas, and can thus faithfully model the consequences of UPF1 mutations found in ASPC.
无义介导的 RNA 降解 (NMD) 是一种快速降解选定 mRNA 的机制。最近的研究 发现 NMD 所需的 UPF1 基因在超过 80% 的人中发生显着突变和失活 腺鳞状胰腺癌(ASPC),一种特别具有侵袭性的胰腺癌。我们有 确定胰腺癌中 UPF1 突变导致 UPF1 表达减少。其他突变 最近有报道称,在胰腺导管腺癌中发现了 NMD 失活,我们报道称 胰腺癌中常见的许多应激都会抑制 NMD 活性。 NMD 抑制促进 转化细胞在软琼脂、皮下外植体和原位胰腺移植中的生长 模型。我们的总体目标是更好地了解 NMD 抑制如何促进肿瘤生长并探索如何 我们可以利用 NMD 抑制来获得胰腺癌的治疗效果。 RNA 稳定性筛选、RNAseq 和代谢组学筛选已将 Notch 信号传导和糖酵解确定为 NMD 调控途径。 Notch 信号传导和糖酵解在胰腺癌中发挥着重要作用 一般而言,最近的胰腺癌分子分类研究表明这两条途径是 在 ASPC 中特别活跃,其中 NMD 通常是基因失活的。重要的是,这些途径可以 也有针对性。在目标 1 中,我们将确定 NMD 抑制 Notch 的机制和意义 胰腺癌中的激活。根据我们的初步数据,我们假设减少了 NMD 抑制 表达稳定 Notch 配体和受体,Notch 信号传导的激活抑制 e-钙粘蛋白 表达在转移和化疗耐药性中发挥关键作用。然而我们也假设 NMD 受到抑制的胰腺癌对 Notch 抑制剂特别敏感。在目标 2 中,我们将确定如何 减少 NMD 抑制可调节代谢途径并利用其获得治疗效果。基于我们的 根据初步数据,我们假设 NMD 抑制可稳定编码的可变剪接转录本 线粒体呼吸系统的成员,这会激活糖酵解和磷酸戊糖 分流。这些途径的激活应该使具有 UPF1 突变的肿瘤对临床更加敏感。 可用的线粒体抑制剂和其他代谢抑制剂,如初步聚焦的 shRNA 所示 合成致死率筛选。对于这两个目标,我们将使用各种体外细胞生物学、生物化学和 分子技术。我们将使用独特的 ASPC 组织阵列以及一种新颖的方法来验证我们的体外研究结果 基因工程小鼠,我们可以暂时下调胰腺中 UPF1 的表达,以及 因此可以忠实地模拟 ASPC 中发现的 UPF1 突变的后果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MARK Reid PHILIPS其他文献

MARK Reid PHILIPS的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MARK Reid PHILIPS', 18)}}的其他基金

FASEB SRC: Structure and Function of Small GTPases
FASEB SRC:小 GTP 酶的结构和功能
  • 批准号:
    10463260
  • 财政年份:
    2022
  • 资助金额:
    $ 39.54万
  • 项目类别:
Differential function and tumor vulnerabilities revealed by RAS membrane trafficking
RAS 膜运输揭示的差异功能和肿瘤脆弱性
  • 批准号:
    10468873
  • 财政年份:
    2020
  • 资助金额:
    $ 39.54万
  • 项目类别:
Differential function and tumor vulnerabilities revealed by RAS membrane trafficking
RAS 膜运输揭示的差异功能和肿瘤脆弱性
  • 批准号:
    10688011
  • 财政年份:
    2020
  • 资助金额:
    $ 39.54万
  • 项目类别:
Medical Scientist Research Service Award
医学科学家研究服务奖
  • 批准号:
    10198956
  • 财政年份:
    2020
  • 资助金额:
    $ 39.54万
  • 项目类别:
Regulation of KRAS Trafficking and Signaling by GPR31
GPR31 对 KRAS 贩运和信号传输的监管
  • 批准号:
    10047185
  • 财政年份:
    2020
  • 资助金额:
    $ 39.54万
  • 项目类别:
Medical Scientist Research Service Award
医学科学家研究服务奖
  • 批准号:
    10417095
  • 财政年份:
    2020
  • 资助金额:
    $ 39.54万
  • 项目类别:
Differential function and tumor vulnerabilities revealed by RAS membrane trafficking
RAS 膜运输揭示的差异功能和肿瘤脆弱性
  • 批准号:
    10237382
  • 财政年份:
    2020
  • 资助金额:
    $ 39.54万
  • 项目类别:
Differential function and tumor vulnerabilities revealed by RAS membrane trafficking
RAS 膜运输揭示的差异功能和肿瘤脆弱性
  • 批准号:
    10053541
  • 财政年份:
    2020
  • 资助金额:
    $ 39.54万
  • 项目类别:
Role of nonsense mediated RNA decay in pancreatic cancer
无义介导的RNA衰变在胰腺癌中的作用
  • 批准号:
    10229380
  • 财政年份:
    2018
  • 资助金额:
    $ 39.54万
  • 项目类别:
Role of nonsense mediated RNA decay in pancreatic cancer
无义介导的RNA衰变在胰腺癌中的作用
  • 批准号:
    9447641
  • 财政年份:
    2018
  • 资助金额:
    $ 39.54万
  • 项目类别:

相似国自然基金

过氧化氢选择性催化琼脂脱硫反应机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
基于体外模拟评价的琼脂和卡拉胶调控肠道稳态机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
琼脂基Pickering乳液稳定剂的理性设计及稳定机理研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Cd(II)在NH2-Agar/PSS双网络水凝胶上的吸附行为及资源化工艺研究
  • 批准号:
    51708204
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
琼脂糖薄膜的化学改性及湿气驱动的能量转化机理研究
  • 批准号:
    51603068
  • 批准年份:
    2016
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Role of nonsense mediated RNA decay in pancreatic cancer
无义介导的RNA衰变在胰腺癌中的作用
  • 批准号:
    10229380
  • 财政年份:
    2018
  • 资助金额:
    $ 39.54万
  • 项目类别:
Role of nonsense mediated RNA decay in pancreatic cancer
无义介导的RNA衰变在胰腺癌中的作用
  • 批准号:
    9447641
  • 财政年份:
    2018
  • 资助金额:
    $ 39.54万
  • 项目类别:
Sphingolipid Regulation of Caspase 9 Alternative Splicing
Caspase 9 选择性剪接的鞘脂调节
  • 批准号:
    7284893
  • 财政年份:
    2006
  • 资助金额:
    $ 39.54万
  • 项目类别:
Sphingolipid Regulation of Caspase 9 Alternative Splicing
Caspase 9 选择性剪接的鞘脂调节
  • 批准号:
    7469448
  • 财政年份:
    2006
  • 资助金额:
    $ 39.54万
  • 项目类别:
Tumorigenesis by the Epstein Barr Virus
EB 病毒引起的肿瘤发生
  • 批准号:
    10696218
  • 财政年份:
    1997
  • 资助金额:
    $ 39.54万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了