Infrared Neuromodulation Reveals a New Understanding of Ganglion Organization
红外神经调节揭示了对神经节组织的新认识
基本信息
- 批准号:9513867
- 负责人:
- 金额:$ 277.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-06 至 2021-05-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAction PotentialsAdoptedAffectAnimalsAplysiaAutonomic ganglionAutonomic nervous systemAutonomic nervous system disordersCalciumCell physiologyCellsChronicClinicalCollectionComplexDataDevelopmentDevicesDiffusionDigestionDiseaseElectrophysiology (science)EnvironmentFrequenciesFutureGangliaGrantHeart RateImageImaging technologyIn VitroInvestigationIon ChannelKnowledgeLaboratoriesLasersLeadLightLightingLocationMapsMethodsMicroscopeModalityModelingMolecularMusNerveNeuronsNodose GanglionOptical Coherence TomographyOpticsOutcomePatternPeripheralPeripheral Nervous SystemPharmaceutical PreparationsPharmacologyPhysicsPhysiologic pulsePhysiologicalPlayPolymersPositioning AttributePreparationRattusReproducibilityResolutionResourcesRespirationRoleSafetySamplingSignal TransductionSiteSpace ExplorationsSpeedStaining methodStainsStructureSurgeonSystemTechniquesTechnologyTemperatureTestingTimeTissuesVisceralWidthWorkclinically relevantdesigndesign and constructionexperimental studyflexibilityganglion cellgenetic manipulationimaging systemimplantationimprovedmicromanipulatorminiaturizeneuroregulationneurotransmissionnew technologynoveloptical fiberpatch clamppressurerelating to nervous systemresponsespatiotemporaltechnology developmenttooltwo-photon
项目摘要
Project Summary
In recent years, it has been become clear that modulating the peripheral nervous system has great potential for
treating diseases. To realize this potential, a new neuromodulation modality is needed that is safe, highly specific,
and rapidly reversible. We have recently shown that infrared neuromodulation (IRN) when applied to peripheral
structures such as the nodose ganglion induces unique patterns of physiological responses that cannot be
elicited by electrical current or drugs. The nodose ganglion plays an important role in regulating many critical
autonomic functions, and IRN application has unmasked a functional organization for different sub-regions of
the ganglion that has not been previously described. These results suggest that IRN has enormous potential for
mapping the topology of functional responses in ganglia, decoding ganglionic circuitry, and as a clinical
neuroceutical device. IRN stimulates neural activity by inducing a brief spatiotemporal temperature gradient or
inhibits activity by increasing the baseline temperature. We propose to advance IRN and imaging technology in
the following ways. First, we will to create new devices to efficiently and precisely deliver IR light to nerves and
ganglia in animals. New devices include flexible polymer waveguides that can deliver light to multiple locations
while conforming and moving freely with the target tissue, a ganglia tracking system that can identify the
orientation of the nodose ganglion and precisely control IR illumination patterns on the ganglia for mapping
function, and advanced calcium imaging systems that can do volumetric imaging of ganglionic activity and
imaging in living animals. Second, we will assess the safety, selectivity, and repeatability of IRN. Third, we will
develop a deep understanding of how IRN works by conducting mechanistic studies that include creating
sophisticated models of IRN’s effect on electrophysiology and experiments to test our hypotheses. Fourth,
because IRN has unmasked a spatial organization to ganglionic function, we will be able to map this organization
in detail and provide an unprecedented understanding of ganglionic function. The tools and knowledge gained
in this grant will not only help determine the potential of IRN, but be beneficial to a host of future neuromodulation
and other applications.
项目概要
近年来,人们已经清楚调节周围神经系统在治疗疾病方面具有巨大潜力。
为了实现这一潜力,需要一种安全、高度特异性的新神经调节方式。
我们最近证明红外神经调节(IRN)应用于外周。
诸如结状神经节之类的结构会引发独特的生理反应模式,而这些模式是无法被预测的。
由电流或药物引起的结状神经节在调节许多关键的方面发挥着重要作用。
自主功能,IRN 应用揭示了不同子区域的功能组织
这些结果表明 IRN 具有巨大的潜力。
绘制神经节功能反应的拓扑结构,解码神经节电路,并作为临床
IRN 通过诱导短暂的时空温度梯度或刺激神经活动。
我们建议通过提高基线温度来抑制活性。
首先,我们将创造新的设备来高效、精确地将红外光传递到神经和神经系统。
新设备包括可将光传送到多个位置的柔性聚合物波导。
在与目标组织一致并自由移动的同时,神经节跟踪系统可以识别目标组织
结节神经节的方向并精确控制神经节上的红外照明模式以进行绘图
功能和先进的钙成像系统,可以对神经节活动进行体积成像
其次,我们将评估 IRN 的安全性、选择性和可重复性。
通过进行机械研究(包括创建
IRN 对电生理学影响的复杂模型和检验我们假设的实验。
因为 IRN 揭示了神经节功能的空间组织,我们将能够绘制该组织的图
详细介绍并提供对神经节功能前所未有的了解。
这笔资金不仅有助于确定 IRN 的潜力,而且有利于未来的许多神经调节
和其他应用程序。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHAEL W. JENKINS其他文献
MICHAEL W. JENKINS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHAEL W. JENKINS', 18)}}的其他基金
Understanding neural control of the ocular surface
了解眼表的神经控制
- 批准号:
10586931 - 财政年份:2022
- 资助金额:
$ 277.24万 - 项目类别:
Understanding neural control of the ocular surface
了解眼表的神经控制
- 批准号:
10707246 - 财政年份:2022
- 资助金额:
$ 277.24万 - 项目类别:
Infrared Neuromodulation Reveals a New Understanding of Ganglion Organization
红外神经调节揭示了对神经节组织的新认识
- 批准号:
10004289 - 财政年份:2017
- 资助金额:
$ 277.24万 - 项目类别:
Infrared Neuromodulation Reveals a New Understanding of Ganglion Organization
红外神经调节揭示了对神经节组织的新认识
- 批准号:
9930180 - 财政年份:2017
- 资助金额:
$ 277.24万 - 项目类别:
Optical Tools to Assess the Role of Cardiac Function in the Development of Congenital Heart Defects
评估心脏功能在先天性心脏缺陷发展中的作用的光学工具
- 批准号:
10593074 - 财政年份:2015
- 资助金额:
$ 277.24万 - 项目类别:
Optical Tools to Assess the Role of Cardiac Function in the Development of Congenital Heart Defects
评估心脏功能在先天性心脏缺陷发展中的作用的光学工具
- 批准号:
10374932 - 财政年份:2015
- 资助金额:
$ 277.24万 - 项目类别:
Optical Tools to Assess the Role of Hemodynamics in the Development of Congenital Heart Defects
评估血流动力学在先天性心脏缺陷发展中的作用的光学工具
- 批准号:
8985102 - 财政年份:2015
- 资助金额:
$ 277.24万 - 项目类别:
Optical Tools to Assess the Role of Cardiac Function in the Development of Congenital Heart Defects
评估心脏功能在先天性心脏缺陷发展中的作用的光学工具
- 批准号:
10211096 - 财政年份:2015
- 资助金额:
$ 277.24万 - 项目类别:
相似国自然基金
神经系统中动作电位双稳传导研究
- 批准号:12375033
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
与痛觉相关的动作电位传导失败的动力学与调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
神经元离子通道-动作电位-量子化分泌关系研究
- 批准号:31930061
- 批准年份:2019
- 资助金额:303 万元
- 项目类别:重点项目
仿生味觉自适应柔性纳米电极阵列构建研究
- 批准号:61901469
- 批准年份:2019
- 资助金额:24.5 万元
- 项目类别:青年科学基金项目
晚钠电流通过CaMK-II调节跨壁胞内钙离子分布在心肌缺血再灌注心律失常中的作用及机制研究
- 批准号:81900300
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Mesoscopic microscopy for ultra-high speed and large-scale volumetric brain imaging
用于超高速和大规模脑体积成像的介观显微镜
- 批准号:
10634911 - 财政年份:2023
- 资助金额:
$ 277.24万 - 项目类别:
Mechanisms of neural compensation in the retina and dysfunction in congenital stationary night blindness
先天性静止性夜盲症视网膜神经代偿机制及功能障碍
- 批准号:
10678730 - 财政年份:2023
- 资助金额:
$ 277.24万 - 项目类别:
ONIX: A Neural Acquisition System for Unencumbered, Closed-Loop Recordings in Small, Freely Moving Animals
ONIX:一种神经采集系统,用于对小型、自由移动的动物进行无阻碍、闭环记录
- 批准号:
10482182 - 财政年份:2022
- 资助金额:
$ 277.24万 - 项目类别:
An electrophysiology platform that enables robust, scalable and long-term intracellular recording of cardiomyocytes
一个电生理学平台,能够对心肌细胞进行稳健、可扩展和长期的细胞内记录
- 批准号:
10500961 - 财政年份:2022
- 资助金额:
$ 277.24万 - 项目类别:
An electrophysiology platform that enables robust, scalable and long-term intracellular recording of cardiomyocytes
一个电生理学平台,能够对心肌细胞进行稳健、可扩展和长期的细胞内记录
- 批准号:
10641918 - 财政年份:2022
- 资助金额:
$ 277.24万 - 项目类别: