Understanding neural control of the ocular surface
了解眼表的神经控制
基本信息
- 批准号:10586931
- 负责人:
- 金额:$ 144.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-30 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAnimal ModelBehaviorBrainBrain regionCalciumCellsChemicalsCorneaCustomDataDebridementDiabetic mouseDiseaseDry Eye SyndromesDyesElectrophysiology (science)EnvironmentEpithelialEquilibriumEsthesiaEyeEyelid structureFeedbackFilmFluorescent in Situ HybridizationFunctional ImagingFunctional disorderGangliaGlandGoblet CellsHomeostasisHumanImageImage AnalysisImmuneImmune responseImmunologyImplantImplanted ElectrodesInflammationIon ChannelKeratitisKnowledgeLacrimal gland structureLeadLightMeasuresMechanicsMethodsMicroscopyModelingMolecularMorphologyMusNatural ImmunityNerveNerve Growth FactorsNervous system structureNeuronsNeurosciencesNociceptionOpticsOrganOrganismPainPain ClinicsPathologicPatternPeripheral Nervous System DiseasesProductionPseudomonas aeruginosaSignal TransductionStimulusStructureStructure of trigeminal ganglionSupporting CellSurfaceSystemTechniquesTechnologyThalamic structureTissuesTrigeminal SystemWorkadaptive immunityblink reflexescell typechemokinecytokinedeep learningdensityinflammatory paininterestlipid metabolismlipophilicitymeibomian glandmicroscopic imagingmouse modelmulti-electrode arraysneuroregulationnew technologyocular surfacepainful neuropathypreservationreceptorrelating to nervous systemresponseresponse to injurysensory feedbackstatisticstool
项目摘要
Project Summary
Currently our understanding of how the nervous system maintains ocular surface homeostasis is extremely
limited. New technologies, methods and models are needed to advance our scientific understanding and address
knowledge gaps. The ocular surface and tear film-secreting glands (including the lacrimal and meibomian glands,
as well as the goblet cells) are carefully controlled to provide an optically smooth, low-scattering surface with
appropriate immune and injury responses. Sensory feedback to maintain the structural and functional integrity
of the ocular surface is provided by the corneal nerves, which send feedback from stimuli (chemical, thermal,
mechanical) to ganglia (e.g., trigeminal) and brain regions (e.g., ventral posteromedial thalamus) to drive
production of tear film components as well as the blink reflex. This delicate balance of neural control is disrupted
by damage, peripheral neuropathies, inflammation and further complicated by a wide array of immune responses
to various diseases. Dysfunction of this feedback loop can lead to a downward spiral of further dysregulation.
Aberrant neural control of the ocular surface can lead to abnormal sensation and pain, which in the worst cases
can be disabling. To find remedies, it is first essential to understand the underlying neural control system and
how it adapts to its environment.
In this proposal, we aim to bring new tools and models to study molecular, cellular, and functional interactions
across systems responsible for neural control of the ocular surface and examine how they change under different
inflammatory and pain conditions. We have assembled an excellent team with expertise across multiple fields
including advanced 3D microscopy, neuroscience, electrophysiology, pain, ocular immunology, ocular lipid
metabolism, ocular surface disorders, spatial statistics, and machine/deep learning. Here, we will utilize cutting
edge techniques and technologies including optical clearing, tract tracing, ethologically-valid behavior analysis,
machine/deep learning, spatial statistics, genetically encoded calcium imaging, light-sheet microscopy,
multiplexed 3D fluorescence in situ hybridization (FISH) imaging, and multi-array electrodes implanted in the
brain. These tools will help us assess molecular, cellular, and functional interactions across organs and begin to
understand ocular surface control at the organism level. We will also employ several relevant animal models to
assess ocular surface control under different inflammatory and pain conditions. Models include AWAT2 deficient
mice that mimic evaporative dry eye disease (DED), diabetic mice, an epithelial debridement model with
Pseudomonas aeruginosa that mimics bacterial keratitis, and human donor eyes. The mouse models all have
gCaMP6f expressed in corneal nerves allowing functional imaging of calcium transients. With these models we
will study both innate and adaptive immunity as well as nociceptive and neuropathic pain responses. In addition,
we will apply nerve growth factor (NGF) to our models to study how a potential treatment option alters the ocular
surface control system.
项目概要
目前我们对神经系统如何维持眼表稳态的了解非常有限
有限的。需要新技术、方法和模型来增进我们的科学理解和解决问题
知识差距。眼表和泪膜分泌腺(包括泪腺和睑板腺,
以及杯状细胞)都经过仔细控制,以提供光学光滑、低散射的表面
适当的免疫和损伤反应。感官反馈以保持结构和功能的完整性
眼表的信息由角膜神经提供,角膜神经发送来自刺激(化学、热、
机械)到神经节(例如三叉神经)和大脑区域(例如腹侧后内侧丘脑)来驱动
泪膜成分的产生以及眨眼反射。这种神经控制的微妙平衡被破坏
由于损伤、周围神经病变、炎症以及一系列免疫反应而进一步复杂化
对各种疾病。这种反馈回路的功能障碍可能会导致进一步失调的螺旋式下降。
眼表神经控制异常会导致感觉异常和疼痛,在最坏的情况下
可能会被禁用。为了找到补救措施,首先必须了解底层的神经控制系统和
它如何适应环境。
在本提案中,我们的目标是引入新的工具和模型来研究分子、细胞和功能相互作用
跨负责眼表神经控制的系统,并检查它们在不同的条件下如何变化
炎症和疼痛状况。我们组建了一支优秀的团队,拥有跨多个领域的专业知识
包括先进的 3D 显微镜、神经科学、电生理学、疼痛、眼部免疫学、眼部脂质
新陈代谢、眼表疾病、空间统计和机器/深度学习。在这里,我们将利用切割
边缘技术和技术,包括光学清除、轨迹追踪、行为学有效的行为分析、
机器/深度学习、空间统计、基因编码钙成像、光片显微镜、
多重 3D 荧光原位杂交 (FISH) 成像,以及植入体内的多阵列电极
脑。这些工具将帮助我们评估器官之间的分子、细胞和功能相互作用,并开始
了解有机体水平上的眼表控制。我们还将采用一些相关的动物模型来
评估不同炎症和疼痛条件下的眼表控制。模型包括 AWAT2 缺陷
模拟蒸发性干眼病(DED)的小鼠、糖尿病小鼠、上皮清创模型
模仿细菌性角膜炎的铜绿假单胞菌和人类捐赠者的眼睛。鼠标型号都有
gCaMP6f 在角膜神经中表达,可实现钙瞬变的功能成像。有了这些模型我们
将研究先天性和适应性免疫以及伤害性和神经性疼痛反应。此外,
我们将在我们的模型中应用神经生长因子(NGF)来研究潜在的治疗方案如何改变眼部
表面控制系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHAEL W. JENKINS其他文献
MICHAEL W. JENKINS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHAEL W. JENKINS', 18)}}的其他基金
Understanding neural control of the ocular surface
了解眼表的神经控制
- 批准号:
10707246 - 财政年份:2022
- 资助金额:
$ 144.46万 - 项目类别:
Infrared Neuromodulation Reveals a New Understanding of Ganglion Organization
红外神经调节揭示了对神经节组织的新认识
- 批准号:
9513867 - 财政年份:2017
- 资助金额:
$ 144.46万 - 项目类别:
Infrared Neuromodulation Reveals a New Understanding of Ganglion Organization
红外神经调节揭示了对神经节组织的新认识
- 批准号:
10004289 - 财政年份:2017
- 资助金额:
$ 144.46万 - 项目类别:
Infrared Neuromodulation Reveals a New Understanding of Ganglion Organization
红外神经调节揭示了对神经节组织的新认识
- 批准号:
9930180 - 财政年份:2017
- 资助金额:
$ 144.46万 - 项目类别:
Optical Tools to Assess the Role of Cardiac Function in the Development of Congenital Heart Defects
评估心脏功能在先天性心脏缺陷发展中的作用的光学工具
- 批准号:
10593074 - 财政年份:2015
- 资助金额:
$ 144.46万 - 项目类别:
Optical Tools to Assess the Role of Cardiac Function in the Development of Congenital Heart Defects
评估心脏功能在先天性心脏缺陷发展中的作用的光学工具
- 批准号:
10374932 - 财政年份:2015
- 资助金额:
$ 144.46万 - 项目类别:
Optical Tools to Assess the Role of Hemodynamics in the Development of Congenital Heart Defects
评估血流动力学在先天性心脏缺陷发展中的作用的光学工具
- 批准号:
8985102 - 财政年份:2015
- 资助金额:
$ 144.46万 - 项目类别:
Optical Tools to Assess the Role of Cardiac Function in the Development of Congenital Heart Defects
评估心脏功能在先天性心脏缺陷发展中的作用的光学工具
- 批准号:
10211096 - 财政年份:2015
- 资助金额:
$ 144.46万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 144.46万 - 项目类别:
Optimization of electromechanical monitoring of engineered heart tissues
工程心脏组织机电监测的优化
- 批准号:
10673513 - 财政年份:2023
- 资助金额:
$ 144.46万 - 项目类别:
Commercial translation of high-density carbon fiber electrode arrays for multi-modal analysis of neural microcircuits
用于神经微电路多模态分析的高密度碳纤维电极阵列的商业转化
- 批准号:
10761217 - 财政年份:2023
- 资助金额:
$ 144.46万 - 项目类别:
High-resolution cerebral microvascular imaging for characterizing vascular dysfunction in Alzheimer's disease mouse model
高分辨率脑微血管成像用于表征阿尔茨海默病小鼠模型的血管功能障碍
- 批准号:
10848559 - 财政年份:2023
- 资助金额:
$ 144.46万 - 项目类别:
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
- 批准号:
10727940 - 财政年份:2023
- 资助金额:
$ 144.46万 - 项目类别: