Penalized-likelihood Algorithms for Time-Domain MR Diffusion Measure Estimation

时域MR扩散测度估计的惩罚似然算法

基本信息

  • 批准号:
    8292088
  • 负责人:
  • 金额:
    $ 23.29万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-07-01 至 2013-09-30
  • 项目状态:
    已结题

项目摘要

The research proposed herein aims at developing accurate and robust methods for the estimation of both voxel-wise diffusion representations (diffusivity or anisotropy maps, diffusion tensor or spectrum maps) and global pathway structure from diffusion-weighted magnetic resonance (DW-MR) data. Although the algorithms will be widely applicable to diffusion MRI, the application of Interest is the imaging of cerebral white-matter structures. The proposed approach is probabilistic and it models two types of uncertainty that are present in DW-MR data: uncertainty introduced by the imaging process in the form of distortions and noise, and inherent uncertainty In the structures to be reconstructed due to individual variability in the underlying anatomy. The former will be addressed by accurate modeling of diffusion MR physics, including the effects of magnetic field inhomogeneities, eddy currents, and noise. The latter will be addressed by rich models of white-matter pathway anatomy, obtained by training the model on a set of subjects where major pathways have been defined manually. Cun'ently estimation of diffusion measures is suboptimal in that it is based on distorted images that are reconstructed without consideration for the underiying MR physics and then corrected for the distortions approximately in a series of post-processing steps. In addition reconstruction of white-matter pathways is labor-intensive because of the need for manual intervention to constrain the solution space and guide the tractography with neuroanatomical expertise. By addressing these issues the proposed project will make estimates of diffusion measures more accurate. It will also automate the reconstruction of white-matter pathways, making such studies practical even for large numbers of subjects. The proposed methods are being developed primarily to address the artifacts present at the data quality that is typical of routine in vivo studies. Thus we will evaluate and optimize our approach on such data. In addition, we will validate our methods on ex vivo brain acquisitions, where results from high-resolution, high-SNR images acquired in long scans can be used as a gold standard for comparison to results from routine-quality images.
本文提出的研究旨在开发准确而稳健的方法来估计两者 体素扩散表示(扩散率或各向异性图、扩散张量或频谱图)和 扩散加权磁共振的全局通路结构 (DW-MR)数据。尽管这些算法将广泛适用于扩散 MRI,但兴趣的应用 是大脑白质结构的成像。所提出的方法是概率性的,它模拟了两个 DW-MR 数据中存在的不确定性类型:成像过程引入的不确定性 扭曲和噪声的形式,以及由于个体因素而要重建的结构中固有的不确定性 基础解剖结构的变异性。前者将通过扩散 MR 的精确建模来解决 物理学,包括磁场不均匀性、涡流和噪声的影响。后者将是 通过丰富的白质通路解剖模型来解决这个问题,这些模型是通过在一组 主要途径已手动定义的科目。目前扩散措施的估计为 次优,因为它基于失真图像,而这些图像是在不考虑 基于 MR 物理原理,然后在一系列后处理中大致校正失真 步骤。此外,白质通路的重建是劳动密集型的 因为需要手动干预来限制解决方案空间并指导纤维束成像 神经解剖学专业知识。通过解决这些问题,拟议项目将对扩散进行估计 测量更准确。它还将自动重建白质通路,使得这样的 即使对于大量科目,研究也是实用的。所提出的方法主要是为了 解决常规体内研究典型的数据质量中存在的伪影。因此我们将评估 并优化我们对此类数据的方法。此外,我们将在离体大脑上验证我们的方法 采集,其中在长扫描中采集的高分辨率、高信噪比图像的结果可用作 与常规质量图像结果进行比较的黄金标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anastasia Yendiki其他文献

Anastasia Yendiki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anastasia Yendiki', 18)}}的其他基金

Bridging diffusion MRI and chemical tracing for validation and inference of fiber architectures
连接扩散 MRI 和化学示踪以验证和推断纤维结构
  • 批准号:
    10318985
  • 财政年份:
    2020
  • 资助金额:
    $ 23.29万
  • 项目类别:
Bridging Diffusion MRI and Chemical Tracing for Validation and Inference of Fiber Architectures
连接扩散 MRI 和化学示踪以验证和推断纤维结构
  • 批准号:
    10530636
  • 财政年份:
    2020
  • 资助金额:
    $ 23.29万
  • 项目类别:
Multimodal mapping of the neurocircuitry of the human prefrontal cortex
人类前额皮质神经回路的多模态映射
  • 批准号:
    9122980
  • 财政年份:
    2016
  • 资助金额:
    $ 23.29万
  • 项目类别:
Structural Connections Core
结构连接核心
  • 批准号:
    10411712
  • 财政年份:
    2015
  • 资助金额:
    $ 23.29万
  • 项目类别:
Structural Connections Core
结构连接核心
  • 批准号:
    10594021
  • 财政年份:
    2015
  • 资助金额:
    $ 23.29万
  • 项目类别:
Penalized-likelihood Algorithms for Time-Domain MR Diffusion Measure Estimation
时域MR扩散测度估计的惩罚似然算法
  • 批准号:
    8059859
  • 财政年份:
    2010
  • 资助金额:
    $ 23.29万
  • 项目类别:
Penalized-likelihood Algorithms for Time-Domain MR Diffusion Measure Estimation
时域MR扩散测度估计的惩罚似然算法
  • 批准号:
    8105518
  • 财政年份:
    2010
  • 资助金额:
    $ 23.29万
  • 项目类别:
Penalized-likelihood Algorithms for Time-Domain MR Diffusion Measure Estimation
时域MR扩散测度估计的惩罚似然算法
  • 批准号:
    7361635
  • 财政年份:
    2008
  • 资助金额:
    $ 23.29万
  • 项目类别:
Penalized-likelihood Algorithms for Time-Domain MR Diffusion Measure Estimation
时域MR扩散测度估计的惩罚似然算法
  • 批准号:
    7612656
  • 财政年份:
    2008
  • 资助金额:
    $ 23.29万
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
  • 批准号:
    10590913
  • 财政年份:
    2023
  • 资助金额:
    $ 23.29万
  • 项目类别:
Predicting firearm suicide in military veterans outside the VA health system using linked civilian electronic health record data
使用链接的民用电子健康记录数据预测退伍军人管理局卫生系统外退伍军人的枪支自杀
  • 批准号:
    10655968
  • 财政年份:
    2023
  • 资助金额:
    $ 23.29万
  • 项目类别:
Deep Learning Based Natural Language Processing Markers of Anxiety and Depression
基于深度学习的自然语言处理的焦虑和抑郁标记
  • 批准号:
    10723819
  • 财政年份:
    2023
  • 资助金额:
    $ 23.29万
  • 项目类别:
Fair risk profiles and predictive models for outcomes of obstructive sleep apnea through electronic medical record data
通过电子病历数据对阻塞性睡眠呼吸暂停结果进行公平的风险概况和预测模型
  • 批准号:
    10678108
  • 财政年份:
    2023
  • 资助金额:
    $ 23.29万
  • 项目类别:
Mining minority enriched AllofUs data for innovative ethnic specific risk prediction modeling
挖掘少数族裔丰富的 AllofUs 数据,用于创新的种族特定风险预测模型
  • 批准号:
    10798514
  • 财政年份:
    2023
  • 资助金额:
    $ 23.29万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了