Patterns and predictors of viral suppression: A Big Data approach

病毒抑制的模式和预测因素:大数据方法

基本信息

项目摘要

Abstract Viral suppression is the final stage of the HIV treatment cascade, which serves as the framework for UNAIDS’ 90-90-90 goals. Sustained viral suppression is one of four strategic areas of the “Ending the HIV Epidemic (EtHE): A Plan for America” federal campaign, launched in February 2019, which aims for the reduction of new HIV infections in the United States (US) by 75% and 90% by 2025 and 2030, respectively. The EtHE campaign focuses on 48 US counties and 7 states, including South Carolina (SC). Given the importance of viral suppression in ending the US HIV epidemic, an optimal predictive model of viral status can help clinicians identify those at risk of poor viral control and inform clinical improvements in HIV treatment and care. Various indicators to characterize the longitudinal virologic outcomes have been proposed in the literature such as sustained viral suppression, viral rebound, low-level viraemia (LLV), persistent LLV, and virologic blips. However, some critical gaps still exist in our efforts to develop an optimal predictive model of viral suppression. These gaps include the use of limited indicators of virologic outcomes, limited duration of follow-up, limited data sources, lack of consideration of structural and socioenvironmental data, small or unrepresentative samples of people living with HIV (PLWH), and limited efforts to translate research findings into service-ready tools for clinical use. With NIH support (R01AI127203) since 2017, we have utilized a Big Data approach to examine treatment gaps (e.g., missed opportunities for diagnosis and linkage to care) among a statewide cohort of PLWH in SC. This ongoing research extracted longitudinal electronic health records data from six state agencies and then linked the patient-level data with county-level data (e.g., socioeconomic indicators, number of health care professionals, hospitals, and health care facilities) from multiple publicly available data sources. The resultant integrated database has enabled us to successfully “track” 11,470 patients who were diagnosed with HIV from 2005 to 2016 in SC and identify the gaps in HIV treatment linkage and retention. Based on the experience and accomplishment of the R01AI127203, we submit this application to examine the longitudinal dynamic pattern of viral suppression, develop optimal predictive models of various viral suppression indicators, and translate the models to service-ready tools for clinical use. In the proposed research, we will: 1) continue to “follow” our cohort for another five years (and also expand the cohort by adding PLWH diagnosed between 2016-2020); 2) expand our database to include additional data on critical predictors of viral suppression (e.g., treatment and laboratory data, alcohol and substance use data) from two newly participating statewide data sources; 3) employ artificial intelligence (AI)-based modeling to understand the dynamic viral load patterns and their predictors; and 4) develop and pilot-test a multifactorial decision system for clinical use. The results will enable the identification of PLWH with poor viral control and suggest “when” and “how” to help those PLWH achieve and maintain viral suppression. The proposed research will improve our understanding of the longitudinal dynamics of viral suppression and inform tailored HIV care management among PLWH in SC and beyond.
抽象的 病毒抑制是艾滋病毒级联治疗的最后阶段,该级联治疗是联合国艾滋病规划署的框架 90-90-90 目标。持续病毒抑制是“结束艾滋病毒流行”的四个战略领域之一。 (EtHE):“美国计划”联邦运动于 2019 年 2 月启动,旨在减少新的 到 2025 年和 2030 年,美国的艾滋病毒感染率将分别减少 75% 和 90%。 鉴于病毒的重要性,重点关注美国 48 个县和 7 个州,其中包括南卡罗来纳州 (SC)。 遏制美国艾滋病毒流行,病毒状态的最佳预测模型可以帮助新教徒 识别那些面临病毒控制不佳风险的人,并为艾滋病毒治疗和护理的临床改进提供信息。 文献中提出了表征纵向病毒学结果的指标,例如 持续病毒抑制、病毒反弹、低水平病毒血症(LLV)、持续LLV和病毒学信号。 然而,我们在开发病毒抑制的最佳预测模型的努力中仍然存在一些关键差距。 这些差距包括使用有限的病毒学结果指标、有限的随访时间、有限的 数据来源,缺乏对结构和社会环境数据的考虑,数据规模小或不具代表性 HIV 感染者 (PLWH) 样本,将研究成果转化为可用服务的努力有限 自 2017 年以来,在 NIH (R01AI127203) 的支持下,我们利用大数据方法来 检查检察官之间的治疗差距(例如,错过诊断和护理联系的机会) 这项正在进行的研究从六名南卡罗来纳州的 PLWH 群体中提取了纵向电子健康记录数据。 国家机构然后将患者级数据与县级数据(例如社会经济指标、 来自多个公开数据的医疗保健专业人员、医院和医疗保健机构的数量) 由此产生的综合数据库使我们能够成功“追踪”11,470 名患者。 2005 年至 2016 年在 SC 诊断出艾滋病毒,并确定艾滋病毒治疗联系和保留方面的差距。 基于R01AI127203的经验和成就,我们提交此申请以审查 病毒抑制的纵向动态模式,优化开发各种病毒的预测模型 抑制指标,并将模型转化为可供临床使用的工具。 研究中,我们将:1)继续“跟踪”我们的队列另外五年(并通过以下方式扩展队列) 添加 2016 年至 2020 年期间诊断的 PLWH);2) 扩展我们的数据库,以包含关键的其他数据 病毒抑制的预测因素(例如,治疗和实验室数据、酒精和药物使用数据)来自两个 3)采用基于人工智能(AI)的建模来理解 动态病毒载量模式及其预测因素;4) 制定并试点测试多因素决策 该系统的临床使用结果将能够识别病毒控制不佳的感染者并提出建议。 拟议的研究将“何时”以及“如何”帮助这些感染者实现并维持病毒抑制。 提高我们对病毒抑制纵向动态的理解,并为量身定制的艾滋病毒护理提供信息 南卡罗来纳州及其他地区的 PLWH 管理。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sexual orientation and gender identity measures and viral suppression for people living with HIV: a protocol for a population-based cohort study.
HIV 感染者的性取向和性别认同措施以及病毒抑制:基于人群的队列研究方案。
  • DOI:
  • 发表时间:
    2024-02-07
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Yang, Xueying;Olatosi, Bankole;Weissman, Sharon;Li, Xiaoming;Zhang, Jiajia
  • 通讯作者:
    Zhang, Jiajia
Protocol for developing a personalised prediction model for viral suppression among under-represented populations in the context of the COVID-19 pandemic.
在 COVID-19 大流行背景下开发个性化预测模型以抑制代表性不足人群的病毒的协议。
  • DOI:
  • 发表时间:
    2023-05-15
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Zhang, Jiajia;Yang, Xueying;Weissman, Sharon;Li, Xiaoming;Olatosi, Bankole
  • 通讯作者:
    Olatosi, Bankole
Developing an ethical framework-guided instrument for assessing bias in EHR-based Big Data studies: a research protocol.
开发一个道德框架指导的工具来评估基于电子病历的大数据研究中的偏见:一项研究协议。
  • DOI:
  • 发表时间:
    2023-08-17
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Qiao, Shan;Khushf, George;Li, Xiaoming;Zhang, Jiajia;Olatosi, Bankole
  • 通讯作者:
    Olatosi, Bankole
Studying patterns and predictors of HIV viral suppression using A Big Data approach: a research protocol.
使用大数据方法研究 HIV 病毒抑制的模式和预测因素:一项研究方案。
  • DOI:
  • 发表时间:
    2022-02-04
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Zhang, Jiajia;Olatosi, Bankole;Yang, Xueying;Weissman, Sharon;Li, Zhenlong;Hu, Jianjun;Li, Xiaoming
  • 通讯作者:
    Li, Xiaoming
Examining Incidence of Diabetes in People Living with HIV: Tracking the Shift in Traditional and HIV-related Risk Factors.
检查艾滋病毒感染者的糖尿病发病率:追踪传统风险因素和艾滋病毒相关风险因素的变化。
  • DOI:
  • 发表时间:
    2024-02-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mohammad Pritom, Gazi Sakir;Yang, Xueying;Gao, Haoyuan;Chen, Shujie;Zhang, Jiajia;Olatosi, Bankole;Li, Xiaoming
  • 通讯作者:
    Li, Xiaoming
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bankole Olatosi其他文献

Bankole Olatosi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bankole Olatosi', 18)}}的其他基金

Patterns and predictors of viral suppression: A Big Data approach
病毒抑制的模式和预测因素:大数据方法
  • 批准号:
    10828961
  • 财政年份:
    2023
  • 资助金额:
    $ 31.78万
  • 项目类别:
Patterns and predictors of viral suppression: A Big Data approach
病毒抑制的模式和预测因素:大数据方法
  • 批准号:
    10425449
  • 财政年份:
    2021
  • 资助金额:
    $ 31.78万
  • 项目类别:
Patterns and predictors of viral suppression: A Big Data approach
病毒抑制的模式和预测因素:大数据方法
  • 批准号:
    10658458
  • 财政年份:
    2021
  • 资助金额:
    $ 31.78万
  • 项目类别:
Patterns and predictors of viral suppression: A Big Data approach
病毒抑制的模式和预测因素:大数据方法
  • 批准号:
    10321732
  • 财政年份:
    2021
  • 资助金额:
    $ 31.78万
  • 项目类别:
Patterns and predictors of viral suppression: A Big Data approach
病毒抑制的模式和预测因素:大数据方法
  • 批准号:
    10622620
  • 财政年份:
    2021
  • 资助金额:
    $ 31.78万
  • 项目类别:
An ethical framework-guided metric tool for assessing bias in EHR-based Big Data studies
一种道德框架指导的度量工具,用于评估基于电子病历的大数据研究中的偏差
  • 批准号:
    10599459
  • 财政年份:
    2021
  • 资助金额:
    $ 31.78万
  • 项目类别:

相似国自然基金

本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Improving outcomes for substance-affected families in the child welfare system
改善儿童福利系统中受药物影响的家庭的成果
  • 批准号:
    10734742
  • 财政年份:
    2023
  • 资助金额:
    $ 31.78万
  • 项目类别:
3/4-American Consortium of Early Liver Transplantation-Prospective Alcohol-associated liver disease Cohort Evaluation (ACCELERATE-PACE)
3/4-美国早期肝移植联盟-前瞻性酒精相关性肝病队列评估(ACCELERATE-PACE)
  • 批准号:
    10711001
  • 财政年份:
    2023
  • 资助金额:
    $ 31.78万
  • 项目类别:
Substance use treatment and county incarceration: Reducing inequities in substance use treatment need, availability, use, and outcomes
药物滥用治疗和县监禁:减少药物滥用治疗需求、可用性、使用和结果方面的不平等
  • 批准号:
    10585508
  • 财政年份:
    2023
  • 资助金额:
    $ 31.78万
  • 项目类别:
2/4-American Consortium of Early Liver Transplantation-Prospective Alcohol-associated liver disease Cohort Evaluation (ACCELERATE-PACE)
2/4-美国早期肝移植联盟-前瞻性酒精相关性肝病队列评估(ACCELERATE-PACE)
  • 批准号:
    10711336
  • 财政年份:
    2023
  • 资助金额:
    $ 31.78万
  • 项目类别:
A Mobile-Delivered Personalized Feedback Intervention for Black Individuals who Engage in Hazardous Drinking
针对有害饮酒的黑人的移动提供的个性化反馈干预
  • 批准号:
    10821512
  • 财政年份:
    2023
  • 资助金额:
    $ 31.78万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了