Supplemental support for the development of high spatiotemporal resolution neuronal imager
对高时空分辨率神经元成像仪开发的补充支持
基本信息
- 批准号:10879866
- 负责人:
- 金额:$ 39.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-05-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAction PotentialsAdministrative SupplementBrainCalciumCollaborationsComplexDendritesDevelopmentFluorescenceGenerationsHeadHumanImageImaging technologyInvestigationKineticsLabelLightMeasuresMembrane PotentialsMental disordersMicroscopeMicroscopyNeuronsNeurosciencesNeurosciences ResearchPhasePopulationProcessResearchResolutionSignal TransductionSliceSpeedStructureSubcellular structureSynapsesTechnologyTestingcognitive functioncollegecommercializationcostdetectorexperimental studyfluorescence imagingimagerimprovedin vivomillisecondnervous system disorderneuralneuroimagingneuronal cell bodyneurotransmissionnovelnovel imaging techniqueperformance testsphysical scienceprogramsprototyperesearch and developmentsensorspatiotemporalsubmicrontemporal measurementtoolvoltage
项目摘要
Project Summary/Abstract
The investigation of the complex neural dynamics and the cognitive functions of the brain requires non-
invasive recording tools with high spatial and temporal resolution. Fluorescence imaging/microscopy is one
of the state-of-the-art technologies for high spatial resolution recording of the activity of neuron populations.
However, existing fluorescence neural imaging technologies generally have limited speed, providing less
than a few hundred frames per second (or several milliseconds temporal resolution). This is not only limited
by the technology barriers (e.g. the low speed of cameras and/or beam scanners), but also constrained by
the low signal level emitted by the delicate micro-scale neuronal structures. The milliseconds or slower
temporal resolution substantially precludes measuring the precise timing of the generation and propagation
of neuron spikes, which is the key component of neural signaling. During this R&D program,
Physical Sciences Inc. (PSI), Dartmouth College, and the Broad Institute of MIT and Harvard propose
to develop and demonstrate a novel fluorescence neural imaging technology that enables high-speed
recording of membrane potentials from multiple neurons. This technology combines two complementary
imaging channels to achieve parallel neuronal recording with both sub-micron spatial and sub-millisecond
temporal resolution. The high-speed recording function is achieved using a novel imaging technique based
on a high-sensitivity single-point detector and a high-speed spatial light modulator (SLM). During the Phase I,
we demonstrated the feasibility of the technology by imaging cultured neurons labeled with calcium and
voltage indicating fluorescent sensors. During the proposed Phase II, we will upgrade the technology and
further demonstrate its value in neuroscience investigations. The Phase II prototypes will include a universal
high spatiotemporal resolution sensor that is compatible with various imaging setups including head-mounted
fluorescence mini-microscopes. Two Phase II prototypes will be delivered to collaborating institutes for
performance testing. The testing experiments will focus on demonstrating high spatiotemporal resolution
recording of fast action potentials from both neuron somas in the brain in vivo and sub-cellular structures
(e.g., dendrites and synapses) of neuron cultures or brain slices using genetically encoded voltage sensors.
During an administrative supplement support, additional sensors will be built for demonstrations to key
opinion leaders, which will accelerate the commercialization process of the technology. This R&D project will
result in a robust technology for non-invasive recording of neuronal kinetics with high spatiotemporal
resolution, offering a greatly needed tool in the neuroscience field.
项目概要/摘要
对复杂的神经动力学和大脑认知功能的研究需要非
具有高空间和时间分辨率的侵入性记录工具。荧光成像/显微镜是其中之一
用于高空间分辨率记录神经元群活动的最先进技术。
然而,现有的荧光神经成像技术普遍速度有限,提供的信息较少
每秒几百帧(或几毫秒时间分辨率)。这不仅是有限的
受到技术障碍(例如相机和/或光束扫描仪的低速)的限制,但也受到
精致的微型神经元结构发出的低信号水平。毫秒或更慢
时间分辨率基本上妨碍了测量生成和传播的精确时间
神经元尖峰,它是神经信号传导的关键组成部分。在本次研发计划期间,
物理科学公司 (PSI)、达特茅斯学院以及麻省理工学院和哈佛大学布罗德研究所提议
开发并展示一种新型荧光神经成像技术,该技术能够实现高速
记录多个神经元的膜电位。该技术结合了两种互补的技术
成像通道实现亚微米空间和亚毫秒并行神经元记录
时间分辨率。高速记录功能是使用基于新型成像技术实现的
在高灵敏度单点探测器和高速空间光调制器(SLM)上。在第一阶段期间,
我们通过对钙标记的培养神经元进行成像来证明该技术的可行性
电压指示荧光传感器。在拟议的第二阶段,我们将升级技术并
进一步证明其在神经科学研究中的价值。第二阶段原型将包括一个通用的
高时空分辨率传感器,兼容各种成像设置,包括头戴式
荧光微型显微镜。两个第二阶段原型将交付给合作机构
性能测试。测试实验将重点展示高时空分辨率
记录体内大脑神经元体和亚细胞结构的快速动作电位
使用基因编码电压传感器的神经元培养物或脑切片(例如树突和突触)。
在行政补充支持期间,将建造额外的传感器用于演示关键
意见领袖,这将加速该技术的商业化进程。该研发项目将
产生了一种用于非侵入性记录高时空神经元动力学的强大技术
分辨率,为神经科学领域提供了急需的工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Youbo Zhao其他文献
Youbo Zhao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Youbo Zhao', 18)}}的其他基金
Ultra-sensitive Singlet Oxygen Dosimeter for Skin Cancer Treatment and Prevention
用于皮肤癌治疗和预防的超灵敏单线态氧剂量计
- 批准号:
10438940 - 财政年份:2021
- 资助金额:
$ 39.89万 - 项目类别:
Ultra-sensitive Singlet Oxygen Dosimeter for Skin Cancer Treatment and Prevention
用于皮肤癌治疗和预防的超灵敏单线态氧剂量计
- 批准号:
10425539 - 财政年份:2021
- 资助金额:
$ 39.89万 - 项目类别:
Ultra-sensitive Singlet Oxygen Dosimeter for Skin Cancer Treatment and Prevention
用于皮肤癌治疗和预防的超灵敏单线态氧剂量计
- 批准号:
10010539 - 财政年份:2020
- 资助金额:
$ 39.89万 - 项目类别:
Advanced Intraoperative Imager for Nerve Identification
用于神经识别的先进术中成像仪
- 批准号:
10481320 - 财政年份:2019
- 资助金额:
$ 39.89万 - 项目类别:
Optical Redox Probe for Continuous Metabolic Monitoring during Natural Products Bioprocessing
用于天然产品生物加工过程中连续代谢监测的光学氧化还原探针
- 批准号:
9907720 - 财政年份:2019
- 资助金额:
$ 39.89万 - 项目类别:
Optical Redox Probe for Continuous Metabolic Monitoring during Natural Products Bioprocessing
用于天然产品生物加工过程中连续代谢监测的光学氧化还原探针
- 批准号:
10480179 - 财政年份:2019
- 资助金额:
$ 39.89万 - 项目类别:
Advanced Intraoperative Imager for Nerve Identification
用于神经识别的先进术中成像仪
- 批准号:
10594515 - 财政年份:2019
- 资助金额:
$ 39.89万 - 项目类别:
Optical Redox Probe for Continuous Metabolic Monitoring during Natural Products Bioprocessing
用于天然产品生物加工过程中连续代谢监测的光学氧化还原探针
- 批准号:
10687154 - 财政年份:2019
- 资助金额:
$ 39.89万 - 项目类别:
High Spatiotemporal Resolution Neural Recording System Using Active Sensing
使用主动传感的高时空分辨率神经记录系统
- 批准号:
10481444 - 财政年份:2018
- 资助金额:
$ 39.89万 - 项目类别:
High Spatiotemporal Resolution Neural Recording System Using Active Sensing
使用主动传感的高时空分辨率神经记录系统
- 批准号:
10591614 - 财政年份:2018
- 资助金额:
$ 39.89万 - 项目类别:
相似国自然基金
神经系统中动作电位双稳传导研究
- 批准号:12375033
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
与痛觉相关的动作电位传导失败的动力学与调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
仿生味觉自适应柔性纳米电极阵列构建研究
- 批准号:61901469
- 批准年份:2019
- 资助金额:24.5 万元
- 项目类别:青年科学基金项目
晚钠电流通过CaMK-II调节跨壁胞内钙离子分布在心肌缺血再灌注心律失常中的作用及机制研究
- 批准号:81900300
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
神经元离子通道-动作电位-量子化分泌关系研究
- 批准号:31930061
- 批准年份:2019
- 资助金额:303 万元
- 项目类别:重点项目
相似海外基金
Administrative Supplement (Diversity) to Generating functional diversity from molecular homogeneity at glutamatergic synapses
从谷氨酸能突触的分子同质性生成功能多样性的行政补充(多样性)
- 批准号:
10841899 - 财政年份:2023
- 资助金额:
$ 39.89万 - 项目类别:
2023 NINDS Landis Mentorship Award - Administrative Supplement to NS121106 Control of Axon Initial Segment in Epilepsy
2023 年 NINDS 兰迪斯指导奖 - NS121106 癫痫轴突初始段控制的行政补充
- 批准号:
10896844 - 财政年份:2023
- 资助金额:
$ 39.89万 - 项目类别:
Effects of Prenatal Alcohol Exposure on Alzheimer's Disease-associated Neuropsychiatric Symptoms
产前酒精暴露对阿尔茨海默病相关神经精神症状的影响
- 批准号:
10743681 - 财政年份:2020
- 资助金额:
$ 39.89万 - 项目类别:
First-in-class peptide therapeutics for mitochondrial disorders: molecular mechanism of action and optimization of design
线粒体疾病的一流肽疗法:分子作用机制和设计优化
- 批准号:
10727483 - 财政年份:2020
- 资助金额:
$ 39.89万 - 项目类别:
Genetically Encoded Reporters of Integrated Neural Activity for Functional Mapping of Neural Circuitry-Administrative Supplement
用于神经回路功能图谱的综合神经活动的基因编码报告-管理补充
- 批准号:
9269378 - 财政年份:2014
- 资助金额:
$ 39.89万 - 项目类别: