A Modular Framework for Data-Driven Neurogenetics to Predict Complex and Multidimensional Autistic Phenotypes
数据驱动神经遗传学预测复杂和多维自闭症表型的模块化框架
基本信息
- 批准号:10826595
- 负责人:
- 金额:$ 46.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAlgorithmsAnxietyArchitectureAttentionAttention deficit hyperactivity disorderAwarenessBedsBiologicalBiological MarkersBiological ProcessBrainBrain regionChildClinicalCollectionCommunitiesComplexComputational algorithmComputer softwareCopy Number PolymorphismDataDependenceDiagnosticDiffusion Magnetic Resonance ImagingDimensionsDiseaseEtiologyFormulationFunctional Magnetic Resonance ImagingGenesGeneticGenetic MarkersGenetic RiskGenetic VariationGenomicsGoalsGraphImageImpaired cognitionImpairmentInterventionLearningLinear ModelsLinkMagnetic Resonance ImagingMapsMental DepressionMethodsModalityModelingMultimodal ImagingMultiomic DataMutationNational Human Genome Research InstituteNeurologicOntologyPathway interactionsPatientsPhenotypeProceduresProcessPublished CommentResearchResearch PersonnelResourcesRestSex DifferencesSingle Nucleotide PolymorphismStructureSymptomsTestingUnited StatesUniversitiesValidationVariantVirginiaVisualizationWorkanalytical toolautism spectrum disorderautisticautoencoderbasebehavioral impairmentbiological systemsbiomarker discoveryclinical heterogeneityclinical phenotypeclinically relevantcomorbiditycostdata frameworkdeep learning modeldeep neural networkfeature selectionflexibilitygenetic architecturegenetic variantgenome-widegraph neural networkimaging geneticsinnovationinsightinstrumentlensmagnetic resonance imaging biomarkermodel developmentmultidimensional datamultimodal datamultimodal neuroimagingmultimodalityneuralneural network architectureneurogeneticsneuroimagingneuroimaging markerneuropsychiatric disorderneuropsychiatrynext generationnovelnovel strategiesnovel therapeuticsopen source tooloperationpersonalized interventionpersonalized therapeuticphenomenological modelssocialsynergismtooluser-friendly
项目摘要
Project Summary/Abstract
Autism Spectrum Disorder (ASD) can be viewed through three complementary lenses: neurologically, it is linked
to distributed changes in brain structure, function, and connectivity; biologically, it is associated with genome-wide
mutations across multiple pathways; and clinically, it manifests as a diverse spectrum of behavioral and cogni-
tive impairments. Despite this richness, treatment options for ASD are based on coarse diagnostics and target
a few specific symptoms, such as social awareness, irritability, and depression. As a result, they have varied,
and often limited, efficacy across patients. Taken together, next-generation therapeutics for ASD will crucially
depend on our ability to bridge its neurological, biological, and clinical viewpoints for personalized intervention.
Imaging-genetics is an emerging field that attempts to link neuroimaging features with genetic variants. How-
ever, most methods focus on a restricted set of biomarkers, and they do not account for clinical phenotype, both
of which provide an incomplete picture of the impacted processes. Our long-term goal is to develop a modu-
lar platform that fuses multimodal neuroimaging and multi-omics data to unravel the complex etiology of ASD.
The overall objective of this proposal is to develop and validate interpretable deep learning models to combine
genome-wide variants with whole-brain structural and functional MRI data. Our innovative strategy is to use
biologically-informed neural network architectures to project each of the modalities to a shared latent space that
is simultaneously predictive of patient-level clinical phenotype. This unique formulation can easily accommodate
missing data modalities, thus maximally utilizing all of the available information. We will devise, implement, vali-
date, and disseminate our model via four specific aims. In Aim 1 we will develop a graph neural network, whose
connections mimic a well-known gene ontology. Hierarchical pooling operations will capture the information flow
through the network, while an attention layer will learn the discriminative biological pathways associated with the
phenotype. In Aim 2 we will develop and integrate a Bayesian feature selection procedure to identify ROI-based
neuroimaging biomarkers and a matrix autoencoder to extract discriminative functional subnetworks from brain
connectivity data. In Aim 3 we will use the fused imaging and genetic architectures to uncover the neural and
biological bases underlying the observed clinical heterogeneity of ASD. Finally, in Aim 4 we will package and dis-
seminate our model as a user-friendly tool for the broader research community. We anticipate the proposed work
will have a transformative impact on ASD research by allowing us to develop refined diagnostic instruments
and on the field of imaging-genetics by providing a new approach for multimodal biomarker discovery.
项目概要/摘要
自闭症谱系障碍 (ASD) 可以通过三个互补的视角来看待:从神经学角度来看,它是相关的
从生物学角度来说,它与大脑结构、功能和连接性的分布式变化有关;
跨多种途径的突变;在临床上,它表现为多种行为和认知
尽管存在丰富的障碍,但自闭症谱系障碍的治疗选择仍基于粗略的诊断和目标。
一些具体的症状,如社交意识、易怒和抑郁,因此,它们各不相同,
总的来说,下一代自闭症谱系障碍治疗方法的疗效往往有限。
取决于我们将神经学、生物学和临床观点联系起来进行个性化干预的能力。
影像遗传学是一个新兴领域,试图将神经影像特征与遗传变异联系起来。
迄今为止,大多数方法都专注于一组有限的生物标志物,并且它们不考虑临床表型
其中提供了受影响流程的不完整情况。我们的长期目标是开发一个模块化的解决方案。
lar 平台融合了多模式神经影像和多组学数据,以揭示 ASD 的复杂病因。
该提案的总体目标是开发和解释可验证的深度学习模型,以结合
我们的创新策略是使用全脑结构和功能 MRI 数据的全基因组变异。
生物信息神经网络架构将每种模式投射到共享的潜在空间
同时预测患者水平的临床表型,这种独特的配方可以轻松适应。
缺少数据模式,从而最大限度地利用所有可用信息,我们将设计、实施、验证。
日期,并通过四个具体目标传播我们的模型。在目标 1 中,我们将开发一个图神经网络,其特征是:
连接模仿众所周知的基因本体,分层池化操作将捕获信息流。
通过网络,而注意力层将学习与
在目标 2 中,我们将开发并集成贝叶斯特征选择程序来识别基于 ROI 的特征。
神经影像生物标志物和矩阵自动编码器从大脑中提取判别性功能子网络
在目标 3 中,我们将使用融合成像和遗传架构来揭示神经和连接数据。
最后,在目标 4 中,我们将打包和展示所观察到的 ASD 临床异质性的生物学基础。
我们期望将我们的模型作为更广泛的研究界的用户友好工具。
将使我们能够开发出精致的诊断仪器,从而对自闭症谱系障碍(ASD)研究产生变革性影响
并在成像遗传学领域提供多模式生物标志物发现的新方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Archana Venkataraman其他文献
Archana Venkataraman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Archana Venkataraman', 18)}}的其他基金
Automated Presurgical Language Mapping via Deep Learning for Multimodal Brain Connectivity
通过深度学习进行自动术前语言映射以实现多模式大脑连接
- 批准号:
10286181 - 财政年份:2021
- 资助金额:
$ 46.95万 - 项目类别:
相似国自然基金
随机阻尼波动方程的高效保结构算法研究
- 批准号:12301518
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大规模黎曼流形稀疏优化算法及应用
- 批准号:12371306
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于任意精度计算架构的量子信息处理算法硬件加速技术研究
- 批准号:62304037
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于物理信息神经网络的雷达回波资料反演蒸发波导算法研究
- 批准号:42305048
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Individual Multimodal Pathway Statistics for Predicting Treatment Response in Late-life Depression
用于预测晚年抑郁症治疗反应的个体多模式通路统计
- 批准号:
10722921 - 财政年份:2023
- 资助金额:
$ 46.95万 - 项目类别:
In vivo Evaluation of Lymph Nodes Using Quantitative Ultrasound
使用定量超声对淋巴结进行体内评估
- 批准号:
10737152 - 财政年份:2023
- 资助金额:
$ 46.95万 - 项目类别:
ARISE (Achieving Routine Intervention and Screening for Emotional health)
ARISE(实现情绪健康的常规干预和筛查)
- 批准号:
10655877 - 财政年份:2023
- 资助金额:
$ 46.95万 - 项目类别:
Neuroanatomically informed biomarker discovery and neurofeedback intervention for OCD
基于神经解剖学的生物标志物发现和强迫症的神经反馈干预
- 批准号:
10739000 - 财政年份:2023
- 资助金额:
$ 46.95万 - 项目类别:
Mobile Three-Dimensional Screening for Cranial Malformations
颅骨畸形移动三维筛查
- 批准号:
10888913 - 财政年份:2023
- 资助金额:
$ 46.95万 - 项目类别: