Programmable Microvesicles for Intracellular Macromolecule Delivery
用于细胞内大分子递送的可编程微泡
基本信息
- 批准号:10798752
- 负责人:
- 金额:$ 23.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-01 至 2025-11-30
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAddressAreaBiological ProductsBiomedical ResearchBypassCell NucleusCell membraneCellsClustered Regularly Interspaced Short Palindromic RepeatsComplementCytosolEncapsulatedEndosomesEngineeringEnzymesExhibitsExtracellular SpaceGTP-Binding ProteinsHumanImmune responseIn VitroIntracellular SpaceMeasuresModificationNucleic AcidsPhenotypeProductionProteinsRNA InterferenceReproducibilityRequest for ApplicationsResearchRibonucleoproteinsSpeedSurfaceSystemTechnologyTherapeuticdesignextracellular vesiclesgene functionimprovedin vivoinnovationinstrumentinterestmacromoleculemicrovesiclesnanobodiesnanoengineeringnanoflow cytometryparticleprotein aggregationprotein degradationresponsetechnology platformtherapeutic developmenttoolubiquitin-protein ligasevesicular stomatitis virus G protein
项目摘要
Project Summary
Technologies to deliver macromolecules across the plasma membrane and bypass endosome
degradation are not only instrumental for elucidating gene function but also hold enormous potential
for therapeutics. Proteins, nucleic acids, and ribonucleoproteins (RNP) have become indispensable
tools for biomedical research, however, their applications in human therapeutics are largely limited to
modulating targets reside in the extracellular space. Only a few percent of exogenous macromolecules
can get through the cellular barriers and make it into the intracellular space. Extracellular vesicles
(EVs) are increasingly being explored as potential vehicles for intracellular therapeutics delivery since
they transport bioactive molecules natively between cells. Cell derived EVs are heterogeneous in size
and composition and, consequently, exhibit low specific activity for delivering cargo of interest. To
address these problems, we developed an innovative macromolecule delivery system based on
engineered extracellular vesicles called gectosomes (G protein ectosomes), designed to co-
encapsulate vesicular stomatitis virus G protein (VSV-G) with bioactive macromolecules via split GFP
complementation. The reversible tethering of cargo to VSV-G provides efficient cargo loading and
endosomal escape simultaneously. Gectosomes demonstrated efficient delivery of catalytic enzymes,
interference RNA, and Cas9 RNPs to the cytosol and nucleus and successful modifications of cellular
phenotypes. We aim to develop a versatile and broadly applicable platform technology that allows
rapid production of highly specific gectosomes capable of modulating intracellular targets in vitro and
in vivo. The objective of this application is to demonstrate the feasibility of our approach by improving
the homogeneity of gectosomes through CRISPR engineering of the producer cells and by creating
gectosomes that deliver engineered nanobodies or ubiquitin E3 ligase CRBN intracellularly to alter
protein aggregation or degradation. We will also examine host immune responses to gectosomes and
elucidate the efficacy window of gectosome delivery in vivo, which will help refine application areas.
This supplement application in response to PA-20-272 (NOT-GM-22-017) requests support to
purchase NanoAnalyzer, a new robust nano-flow cytometry analyzer for measuring the concentration
and size of very small particles according to the surface markers. NanoAnalyzer greatly increase the
speed, reliability and reproducibility of analysis of extracellular vesicles. The proposed purchase of
this cutting-edge instrument will overcome current limitations in analyzing extracellular vesicles and
enable us to develop the gectosome technology that aims to deliver biologics to the intracellular space
and accelerate research innovation for therapeutics development.
项目概要
跨质膜传递大分子并绕过内体的技术
降解不仅有助于阐明基因功能,而且具有巨大的潜力
用于治疗。蛋白质、核酸和核糖核蛋白(RNP)已变得不可或缺
生物医学研究的工具,然而,它们在人类治疗中的应用很大程度上限于
调节目标位于细胞外空间。仅占外源性大分子的百分之几
可以穿过细胞屏障并进入细胞内空间。细胞外囊泡
自以来,(EV)越来越多地被探索作为细胞内治疗传递的潜在载体
它们在细胞之间自然运输生物活性分子。电池衍生的电动汽车尺寸不一
和组成,因此,对于输送感兴趣的货物表现出较低的比活性。到
针对这些问题,我们开发了一种基于
工程化的细胞外囊泡称为基因胞体(G 蛋白胞外体),旨在共同
通过分裂 GFP 将水泡性口炎病毒 G 蛋白 (VSV-G) 与生物活性大分子封装在一起
互补。货物与 VSV-G 的可逆系留提供了高效的货物装载和运输
内体同时逃逸。 Gectosomes 证明了催化酶的有效传递,
干扰RNA和Cas9 RNPs对细胞质和细胞核的影响以及细胞的成功修饰
表型。我们的目标是开发一种多功能且广泛适用的平台技术,使
快速生产能够在体外调节细胞内靶标的高度特异性的基因组
体内。该应用程序的目的是通过改进来证明我们的方法的可行性
通过生产细胞的 CRISPR 工程并通过创建
在细胞内传递工程化纳米抗体或泛素 E3 连接酶 CRBN 以改变
蛋白质聚集或降解。我们还将检查宿主对卵泡体的免疫反应和
阐明基因组体内递送的功效窗口,这将有助于完善应用领域。
本补充申请响应 PA-20-272 (NOT-GM-22-017) 请求支持
购买 NanoAnalyzer,一种用于测量浓度的新型强大纳米流式细胞术分析仪
以及根据表面标记的非常小的颗粒的尺寸。纳米分析仪大大提高了
细胞外囊泡分析的速度、可靠性和重现性。建议购买
这种尖端仪器将克服目前分析细胞外囊泡和
使我们能够开发旨在将生物制剂输送到细胞内空间的基因组技术
并加速治疗药物开发的研究创新。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
XUEDONG LIU其他文献
XUEDONG LIU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('XUEDONG LIU', 18)}}的其他基金
Development of a Gectosome Therapy for Cardiovascular Diseases
心血管疾病的基因组疗法的开发
- 批准号:
10384422 - 财政年份:2022
- 资助金额:
$ 23.2万 - 项目类别:
Programmable Microvesicles for Intracellular Macromolecule Delivery
用于细胞内大分子递送的可编程微泡
- 批准号:
10544761 - 财政年份:2022
- 资助金额:
$ 23.2万 - 项目类别:
Programmable Microvesicles for Intracellular Macromolecule Delivery
用于细胞内大分子递送的可编程微泡
- 批准号:
10676021 - 财政年份:2022
- 资助金额:
$ 23.2万 - 项目类别:
Neuron Specific mRNA Transfer With Fusogenic Microvesicles
使用融合微泡进行神经元特异性 mRNA 转移
- 批准号:
10578732 - 财政年份:2022
- 资助金额:
$ 23.2万 - 项目类别:
Programmable Microvesicles for Intracellular Macromolecule Delivery
用于细胞内大分子递送的可编程微泡
- 批准号:
10350387 - 财政年份:2022
- 资助金额:
$ 23.2万 - 项目类别:
Neuron Specific mRNA Transfer With Fusogenic Microvesicles
使用融合微泡进行神经元特异性 mRNA 转移
- 批准号:
10451377 - 财政年份:2022
- 资助金额:
$ 23.2万 - 项目类别:
Quantitative Analysis of Mechanochemical Signaling in Wound Response
伤口反应中机械化学信号的定量分析
- 批准号:
9303654 - 财政年份:2016
- 资助金额:
$ 23.2万 - 项目类别:
High Throughput Screening to Discover Chemical Probes and Pharmacological Agents for Modulating Parkin Activity
高通量筛选以发现调节 Parkin 活性的化学探针和药理学制剂
- 批准号:
9115654 - 财政年份:2015
- 资助金额:
$ 23.2万 - 项目类别:
Quantitative Analysis of Mechanochemical Signaling in Wound Response
伤口反应中机械化学信号的定量分析
- 批准号:
8913630 - 财政年份:2015
- 资助金额:
$ 23.2万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 23.2万 - 项目类别:
Analysis of Alzheimer's disease studies that feature truncated or interval-censored covariates
对具有截断或区间删失协变量的阿尔茨海默病研究的分析
- 批准号:
10725225 - 财政年份:2023
- 资助金额:
$ 23.2万 - 项目类别:
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
- 批准号:
10727940 - 财政年份:2023
- 资助金额:
$ 23.2万 - 项目类别:
Evaluating the impacts of sea level rise on migration and wellbeing in coastal communities
评估海平面上升对沿海社区移民和福祉的影响
- 批准号:
10723570 - 财政年份:2023
- 资助金额:
$ 23.2万 - 项目类别: