Cyst-X: Interpretable Deep Learning Based Risk Stratification of Pancreatic Cystic Tumors
Cyst-X:基于可解释深度学习的胰腺囊性肿瘤风险分层
基本信息
- 批准号:10689657
- 负责人:
- 金额:$ 48.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:Academic Medical CentersAlgorithmsArtificial IntelligenceBiopsyCancer EtiologyCessation of lifeCharacteristicsClinicClinicalColon CarcinomaColonic PolypsCystCystic NeoplasmDataData SetDetectionDevelopmentDiagnosisDiagnosticDiseaseEarly DiagnosisEpithelial cystEuropeanEvaluationExcisionGoalsGuidelinesHigh PrevalenceHistopathologyImageIn Situ LesionIndividualInternationalLesionMRI ScansMagnetic Resonance ImagingMalignant - descriptorMalignant NeoplasmsMalignant neoplasm of pancreasMedical centerMethodsModelingMorbidity - disease rateMucinous CystadenomaMucinous NeoplasmMulticenter StudiesNamesNoninfiltrating Intraductal CarcinomaOperative Surgical ProceduresOrganOutcomeOutcomes ResearchPancreasPancreatectomyPancreatic CystPancreatic cystic neoplasiaPapillaryPatient TriagePatient-Focused OutcomesPatientsPerformancePrognosisPropertyRadiology SpecialtyRecommendationReference StandardsResearchRiskScanningSensitivity and SpecificitySeriesSerous CystadenomaSideStructureSurveillance ProgramSurvival RateSystemTechnologyTestingTimeTrustUnited StatesUniversitiesUnnecessary SurgeryVisualautomated algorithmcancer invasivenesscancer typecapsuleclinical centerclinical decision-makingcostdeep learningdeep learning algorithmdesigndetection methoddetection platformdiagnostic accuracydiagnostic toolefficacy validationexperimental studyfollow-uphigh riskimprovedlearning strategymalignant breast neoplasmmortalitynovel diagnosticspancreatic neoplasmpremalignantprognostic significanceradiological imagingradiologistradiomicsrisk stratificationscreeningstemtool
项目摘要
Project Summary
The overall goal of this project is to develop a new diagnostic tool, called Cyst-X, for accurate detection and
characterization of pre-cancerous pancreatic cysts and improve patient outcome through precise decisions
(surgical resection or surveillance). Pancreatic cancer is the most fatal cancer among all cancers due to its poor
prognosis and lack of early detection methods. Unlike other common cancers where precursor lesions are well
known (colon polyps-colon cancer, ductal carcinoma in situ (DCIS)-breast cancer), pancreas cancer precursors
(cysts) are poorly understood. Diagnosing pancreatic cancer at earlier stages may decrease mortality and
morbidity rates of this lethal disease. One major approach for diagnosing pancreatic cancer at earlier stages is
to target pancreatic precancerous pancreatic neoplasms (cysts) before they turn into invasive cancer. Once cysts
are detected with radiology imaging such as magnetic resonance imaging (MRI), they should be characterized
with respect to their malignant potential. Low-risk cysts remain harmless; hence, patients should remain under
surveillance program. On the other hand, high-risk cysts can progress into an aggressive cancer, therefore,
patients should undergo surgical resection if possible. Despite this, international guidelines for risk stratification
of pancreatic cysts are woefully deficient (55-76% accuracy for determining characteristics of low-risk vs high
risk cystic tumors, while only 40-50% accuracy detecting cysts with MRI). Combined, these critical barriers
indicate that there is an urgent need for improving characterization of pancreatic cystic tumors. Based on our
preliminary results, which support the development of an image-based diagnostic decision tool, we hypothesize
that our proposed Cyst-X will produce higher diagnostic accuracy for characterizing pancreatic cysts and provide
better patient management compared to the current guidelines. Towards this overarching hypothesis, we will
first use powerful deep learning methods (specifically deep capsule networks) for automatically detecting and
segmenting the pancreas and pancreatic cysts from multi-sequence MRI scans (Aim 1). Next, we will create an
interpretable image-based diagnosis model for characterizing pancreatic cysts (Aim 2). Accurate
characterization is necessary for such a diagnostic model; however, emphasis will also be placed on
interpretability of the machine generated diagnostic model. Visual explanation of the discriminative features will
help radiologists obtain higher decision rates in patient management. In Aim 3, we will validate the proposed
Cyst-X framework in a multi-center study. A total of 1200 multi-sequence MRI scans will be collected from three
participating clinical centers (Mayo Clinic, Columbia University Medical Center, Erasmus Medical Center).
Comprehensive evaluations will be made to test the validity and generalizability of Cyst-X. All evaluations will be
made with respect to the international guidelines and biopsy proven ground truths. Our proposed study has wide
implications: specifically, in the long term, it will influence early diagnosis of pancreatic cancer and clinical
decision making to improve survival rates of pancreatic cancer.
项目概要
该项目的总体目标是开发一种新的诊断工具,称为 Cyst-X,用于准确检测和
癌前胰腺囊肿的特征并通过精确的决策改善患者的治疗结果
(手术切除或监测)。胰腺癌因其恶性程度低而成为所有癌症中死亡率最高的癌症
预后和缺乏早期检测方法。与其他常见癌症不同的是,其前兆病变良好
已知(结肠息肉-结肠癌、导管原位癌 (DCIS)-乳腺癌)、胰腺癌前兆
(囊肿)人们知之甚少。早期诊断胰腺癌可能会降低死亡率
这种致命疾病的发病率。早期诊断胰腺癌的一种主要方法是
在胰腺癌前肿瘤(囊肿)转变为浸润性癌症之前将其靶向治疗。一旦出现囊肿
通过放射学成像(例如磁共振成像(MRI))检测到,应对其进行表征
关于它们的恶性潜力。低风险囊肿仍然无害;因此,患者应保持在
监视计划。另一方面,高风险囊肿可能发展成侵袭性癌症,因此,
如果可能的话,患者应接受手术切除。尽管如此,风险分层的国际指南
的胰腺囊肿严重缺乏(确定低风险与高风险特征的准确度为 55-76%)
风险囊性肿瘤,而 MRI 检测囊肿的准确率只有 40-50%)。综合起来,这些关键障碍
表明迫切需要改善胰腺囊性肿瘤的特征。基于我们的
我们假设初步结果支持基于图像的诊断决策工具的开发
我们提出的 Cyst-X 将为表征胰腺囊肿提供更高的诊断准确性,并提供
与现行指南相比,更好的患者管理。为了实现这一总体假设,我们将
首先使用强大的深度学习方法(特别是深度胶囊网络)来自动检测和
从多序列 MRI 扫描中分割胰腺和胰腺囊肿(目标 1)。接下来,我们将创建一个
用于表征胰腺囊肿的可解释的基于图像的诊断模型(目标 2)。准确的
对于这样的诊断模型来说,表征是必要的;然而,还将重点放在
机器生成的诊断模型的可解释性。区分特征的视觉解释将
帮助放射科医生在患者管理中获得更高的决策率。在目标 3 中,我们将验证提议的
多中心研究中的 Cyst-X 框架。将从三个中心收集总共 1200 个多序列 MRI 扫描
参与临床中心(梅奥诊所、哥伦比亚大学医学中心、伊拉斯谟医学中心)。
将进行综合评估以测试Cyst-X的有效性和普遍性。所有评价将
根据国际准则和活检证实的基本事实制定。我们提出的研究具有广泛的
影响:具体而言,从长远来看,它将影响胰腺癌的早期诊断和临床
提高胰腺癌生存率的决策。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ulas Bagci其他文献
Ulas Bagci的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ulas Bagci', 18)}}的其他基金
Hybrid Intelligence for Trustable Diagnosis And Patient Management of Prostate Cancer (HIT-PIRADS)
用于前列腺癌可信诊断和患者管理的混合智能 (HIT-PIRADS)
- 批准号:
10611212 - 财政年份:2023
- 资助金额:
$ 48.87万 - 项目类别:
Application of machine learning for fast prediction of MRI-induced RF heating in patients with implanted conductive leads
应用机器学习快速预测植入导电导线患者的 MRI 引起的射频加热
- 批准号:
10431261 - 财政年份:2022
- 资助金额:
$ 48.87万 - 项目类别:
Application of machine learning for fast prediction of MRI-induced RF heating in patients with implanted conductive leads
应用机器学习快速预测植入导电导线患者的 MRI 引起的射频加热
- 批准号:
10611468 - 财政年份:2022
- 资助金额:
$ 48.87万 - 项目类别:
Cyst-X: Interpretable Deep Learning Based Risk Stratification of Pancreatic Cystic Tumors
Cyst-X:基于可解释深度学习的胰腺囊性肿瘤风险分层
- 批准号:
10391173 - 财政年份:2020
- 资助金额:
$ 48.87万 - 项目类别:
Radiologist-Centered Artificial Intelligence (RCAI) for Lung Cancer Screening and Diagnosis
以放射科医生为中心的人工智能(RCAI)用于肺癌筛查和诊断
- 批准号:
10339620 - 财政年份:2020
- 资助金额:
$ 48.87万 - 项目类别:
Cyst-X: Interpretable Deep Learning Based Risk Stratification of Pancreatic Cystic Tumors
Cyst-X:基于可解释深度学习的胰腺囊性肿瘤风险分层
- 批准号:
10397701 - 财政年份:2020
- 资助金额:
$ 48.87万 - 项目类别:
Radiologist-Centered Artificial Intelligence (RCAI) for Lung Cancer Screening and Diagnosis
以放射科医生为中心的人工智能(RCAI)用于肺癌筛查和诊断
- 批准号:
10640048 - 财政年份:2020
- 资助金额:
$ 48.87万 - 项目类别:
相似国自然基金
基于人工智能和多模态信息预测复杂下肢动脉病变术后不良事件的算法机制研究
- 批准号:82370499
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
面向智能电网用户侧的智能优化调度和人工智能算法安全研究
- 批准号:62373297
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于“人工智能算法+高精度遥感数据”的棉花表型信息识别及解析
- 批准号:32360436
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
人工智能算法嵌入街头官僚决策的行为效应及其认知触发机制研究
- 批准号:72304110
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于人工智能算法辅助高通量纳米等离子芯片用于前列腺癌尿液外泌体多元标志物的检测
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Automatic, Opportunistic Surveillance of Hip Bone Fragility in X-ray Images
X 射线图像中髋骨脆性的自动、机会性监视
- 批准号:
10697573 - 财政年份:2023
- 资助金额:
$ 48.87万 - 项目类别:
Association of Phenotypes and Genotype with Treatment Response in Psoriatic Arthritis
表型和基因型与银屑病关节炎治疗反应的关联
- 批准号:
10723557 - 财政年份:2023
- 资助金额:
$ 48.87万 - 项目类别:
Automatic, Opportunistic Surveillance of Hip Bone Fragility in X-ray Images
X 射线图像中髋骨脆性的自动、机会性监视
- 批准号:
10697573 - 财政年份:2023
- 资助金额:
$ 48.87万 - 项目类别:
Early Identification of Childhood Cancer Survivors at High Risk for Late Onset Cardiomyopathy: An Artificial Intelligence Approach utilizing Electrocardiography
早期识别迟发性心肌病高风险儿童癌症幸存者:利用心电图的人工智能方法
- 批准号:
10457160 - 财政年份:2022
- 资助金额:
$ 48.87万 - 项目类别: