Application of machine learning for fast prediction of MRI-induced RF heating in patients with implanted conductive leads
应用机器学习快速预测植入导电导线患者的 MRI 引起的射频加热
基本信息
- 批准号:10611468
- 负责人:
- 金额:$ 7.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsAmericanCardiacCoiled BodiesConsumptionData SetDedicationsDeep Brain StimulationDemocracyDevicesElectromagnetic EnergyElectromagneticsElectronicsFatal injuryFriendsGoalsGrantGrowthGuidelinesHandHeadHeatingHourHuman bodyImageImplantKnowledgeLeadLengthMachine LearningMagnetic Resonance ImagingMeasurementMeasuresMedical ImagingMedicineMemoryMethodologyModelingOrthopedicsOutcomeOutputPatientsPilot ProjectsPostoperative PeriodProceduresPublic HealthRecommendationResourcesRisk AssessmentSafetySamplingSpinal CordStructureSystemTechniquesTemperatureTestingTimeTrainingTranslatingUncertaintyUnited States National Institutes of HealthValidationVendorWorkX-Ray Computed Tomographyblindcapsulecardiac implantcluster computingdeep learningdeep learning algorithmelectric fieldimplant designimplantable devicein silicoinnovationlearning strategymachine learning algorithmmedical implantmodels and simulationneuroregulationnovelradio frequencyresponsesimulationtool
项目摘要
Project Summary
There is a steady growth in the use of conductive medical implants in the US and globally. Currently, more
than 12 million Americans carry a form of orthopedic, cardiac, or neuromodulation device, and the number
grows by 100,000 annually. It is estimated that 50-75% of patients with implants would benefit from magnetic
resonance imaging (MRI) during their lifetime, some with repeated examinations. Unfortunately, the interaction
between MRI's radiofrequency (RF) fields and conductive implants have led to fatal injuries due to RF heating
of implants, making MRI inaccessible to most patients. In response, extensive effort has been dedicated to
quantifying and mitigating the problem of MR-induced RF heating. Following regulatory recommendations,
these efforts heavily rely on full-wave electromagnetic (EM) simulations that model details of MRI RF coils,
human body, and implant, and as such are notoriously cumbersome. Even taking advantage of today's high-
power computing clusters it typically takes tens of hours to complete a single simulation. Our long-term goal is
to enable application of in-silico medicine for RF heating assessment of implants in real time and on a patient-
by-patient basis. Our main hypothesis is to test whether advanced deep learning (DL) methods can rapidly and
accurately predict RF heating of elongated implants (such as leads), when only the background electric field of
the MRI RF coil and the implant's trajectory are in hand. The background RF field is the field that exists in the
body in the absence of the implanted device and can be easily calculated in advance for any known MRI coil.
Similarly, the implant's trajectory can be extracted from routine medical images in only a few minutes. Herein,
we propose to develop, optimize, and experimentally validate a deep learning approach that predicts RF
heating of DBS systems during MRI with body coils at both 1.5 T and 3 T with <2℃ error. We will build training
datasets from 500 patient-derived DBS lead models, apply EM simulations to calculate ground truth RF heating
using vendor-provided models of MRI RF coils, and develop deep learning algorithms to predict the RF heating
with 2℃ accuracy with knowledge of only the implant's trajectory (CT-based) and the coil's features (vendor-
specific). If successful, our work will introduce a paradigm shift in the practice of MRI RF heating assessment,
reducing simulation times from tens of hours to a few minutes. This will democratize a practice that is currently
afforded by only a handful of well-resourced companies and opens the door to a plethora of novel implant
designs and patient-specific safety guidelines. Importantly, the knowledge gained in this innovative work can
be translated to patients with other types of implants, especially those with cardiac implantable electronic
devices and spinal cord stimulators.
项目概要
目前,导电医疗植入物的使用在美国和全球范围内稳步增长。
超过 1200 万美国人携带某种形式的矫形、心脏或神经调节设备,并且数量
据估计,50-75% 的植入患者将受益于磁性。
磁共振成像(MRI)在他们的一生中,有些与重复的检查不幸地相互作用。
MRI 射频 (RF) 场和导电植入物之间的射频加热导致致命伤害
植入物的数量过多,使得大多数患者无法进行 MRI 扫描。为此,人们付出了巨大的努力。
遵循监管建议,量化并缓解 MR 引起的射频加热问题。
这些在很大程度上依赖于对 MRI RF 线圈的细节进行建模的全波电磁 (EM) 模拟,
即使利用当今的高技术,人体和植入物也是出了名的麻烦。
电力计算集群通常需要数十个小时才能完成一次模拟,我们的长期目标是。
能够应用计算机模拟医学对植入物进行实时射频加热评估,并对患者进行评估
我们的主要假设是测试先进的深度学习 (DL) 方法是否可以快速且有效地进行。
当只有背景电场时,准确预测细长植入物(例如引线)的射频加热
MRI 射频线圈和植入物的轨迹尽在掌握。背景射频场是存在于体内的场。
在没有植入设备的情况下,可以轻松地提前计算出任何已知的 MRI 线圈。
同样,只需几分钟即可从常规医学图像中提取植入物的轨迹。
我们建议开发、优化并通过实验验证一种预测 RF 的深度学习方法
在 MRI 期间使用 1.5 T 和 3 T 的身体线圈加热 DBS 系统,误差 <2℃ 我们将建立训练。
来自 500 个患者衍生的 DBS 主要模型的数据集,应用电磁模拟来计算地面真实射频加热
使用供应商提供的 MRI 射频线圈模型,并开发深度学习算法来预测射频加热
精度为 2℃,仅了解植入物的轨迹(基于 CT)和线圈的特征(供应商)
如果成功,我们的工作将在 MRI 射频加热评估实践中引入范式转变,
将模拟时间从几十小时减少到几分钟,这将使当前的实践民主化。
仅由少数资源充足的公司提供,并为大量新颖的植入物打开了大门
重要的是,在这项创新工作中获得的知识可以。
可以转化为具有其他类型植入物的患者,特别是那些具有心脏植入式电子设备的患者
设备和脊髓刺激器。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Rapid prediction of MRI-induced RF heating of active implantable medical devices using machine learning.
使用机器学习快速预测 MRI 引起的有源植入式医疗设备的射频加热。
- DOI:
- 发表时间:2023-07
- 期刊:
- 影响因子:0
- 作者:Vu, Jasmine;Sanpitak, Pia;Bhusal, Bhumi;Jiang, Fuchang;Golestanirad, Laleh
- 通讯作者:Golestanirad, Laleh
Application of Machine learning to predict RF heating of cardiac leads during magnetic resonance imaging at 1.5 T and 3 T: A simulation study.
应用机器学习预测 1.5 T 和 3 T 磁共振成像期间心脏引线的射频加热:一项模拟研究。
- DOI:
- 发表时间:2023-04
- 期刊:
- 影响因子:0
- 作者:Chen, Xinlu;Zheng, Can;Golestanirad, L
- 通讯作者:Golestanirad, L
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ulas Bagci其他文献
Ulas Bagci的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ulas Bagci', 18)}}的其他基金
Hybrid Intelligence for Trustable Diagnosis And Patient Management of Prostate Cancer (HIT-PIRADS)
用于前列腺癌可信诊断和患者管理的混合智能 (HIT-PIRADS)
- 批准号:
10611212 - 财政年份:2023
- 资助金额:
$ 7.07万 - 项目类别:
Application of machine learning for fast prediction of MRI-induced RF heating in patients with implanted conductive leads
应用机器学习快速预测植入导电导线患者的 MRI 引起的射频加热
- 批准号:
10431261 - 财政年份:2022
- 资助金额:
$ 7.07万 - 项目类别:
Cyst-X: Interpretable Deep Learning Based Risk Stratification of Pancreatic Cystic Tumors
Cyst-X:基于可解释深度学习的胰腺囊性肿瘤风险分层
- 批准号:
10391173 - 财政年份:2020
- 资助金额:
$ 7.07万 - 项目类别:
Radiologist-Centered Artificial Intelligence (RCAI) for Lung Cancer Screening and Diagnosis
以放射科医生为中心的人工智能(RCAI)用于肺癌筛查和诊断
- 批准号:
10339620 - 财政年份:2020
- 资助金额:
$ 7.07万 - 项目类别:
Cyst-X: Interpretable Deep Learning Based Risk Stratification of Pancreatic Cystic Tumors
Cyst-X:基于可解释深度学习的胰腺囊性肿瘤风险分层
- 批准号:
10397701 - 财政年份:2020
- 资助金额:
$ 7.07万 - 项目类别:
Radiologist-Centered Artificial Intelligence (RCAI) for Lung Cancer Screening and Diagnosis
以放射科医生为中心的人工智能(RCAI)用于肺癌筛查和诊断
- 批准号:
10640048 - 财政年份:2020
- 资助金额:
$ 7.07万 - 项目类别:
Cyst-X: Interpretable Deep Learning Based Risk Stratification of Pancreatic Cystic Tumors
Cyst-X:基于可解释深度学习的胰腺囊性肿瘤风险分层
- 批准号:
10689657 - 财政年份:2020
- 资助金额:
$ 7.07万 - 项目类别:
相似国自然基金
基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
- 批准号:82304250
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多模态高层语义驱动的深度伪造检测算法研究
- 批准号:62306090
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高精度海表反照率遥感算法研究
- 批准号:42376173
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于新型深度学习算法和多组学研究策略鉴定非编码区剪接突变在肌萎缩侧索硬化症中的分子机制
- 批准号:82371878
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于深度学习与水平集方法的心脏MR图像精准分割算法研究
- 批准号:62371156
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Incorporating residential histories into assessment of cancer risk in a predominantly low-income and racially diverse population
将居住史纳入以低收入和种族多元化为主的人群的癌症风险评估中
- 批准号:
10735164 - 财政年份:2023
- 资助金额:
$ 7.07万 - 项目类别:
Identifying Risk Factors for Poor Glycemic Control among Emergency Department Patients and Improving Linkage to Outpatient Care
确定急诊科患者血糖控制不佳的风险因素并改善与门诊护理的联系
- 批准号:
10734304 - 财政年份:2023
- 资助金额:
$ 7.07万 - 项目类别:
A Novel Algorithm to Identify People with Undiagnosed Alzheimer's Disease and Related Dementias
一种识别未确诊阿尔茨海默病和相关痴呆症患者的新算法
- 批准号:
10696912 - 财政年份:2023
- 资助金额:
$ 7.07万 - 项目类别:
Bayesian approaches to identify persons with osteoarthritis in electronic health records and administrative health data in the absence of a perfect reference standard
在缺乏完美参考标准的情况下,贝叶斯方法在电子健康记录和管理健康数据中识别骨关节炎患者
- 批准号:
10665905 - 财政年份:2023
- 资助金额:
$ 7.07万 - 项目类别:
Sleep and Cardiometabolic Subgroup Discovery and Risk Prediction in United States Adolescents and Young Adults: A Multi-Study Multi-Domain Analysis of NHANES and NSRR
美国青少年和年轻人的睡眠和心脏代谢亚组发现和风险预测:NHANES 和 NSRR 的多研究多领域分析
- 批准号:
10639360 - 财政年份:2023
- 资助金额:
$ 7.07万 - 项目类别: