Statistical ICA Methods for Analysis and Integration of Multi-dimensional Data
多维数据分析与整合的统计ICA方法
基本信息
- 批准号:10687870
- 负责人:
- 金额:$ 51.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-25 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdvanced DevelopmentAwardBehaviorBehavior assessmentBiological MarkersBrainBrain imagingClinicalClinical assessmentsCommunitiesComplexComputational TechniqueDataData AnalysesData SetDevelopmentDiagnosisDiffusion Magnetic Resonance ImagingDimensionsDisease ProgressionFeeling suicidalFingerprintFunctional Magnetic Resonance ImagingFundingGoalsHumanHybridsImageIndividualInvestigationJointsLeadLibrariesLinkLongitudinal StudiesMajor Depressive DisorderMeasuresMental DepressionMental HealthMental disordersMethodsModelingNational Institute of Mental HealthNeural PathwaysNeurosciences ResearchPatientsPhenotypePhysiologicalPrediction of Response to TherapyPsychiatryPythonsRegimenRelapseResearchSample SizeSelection for TreatmentsStatistical MethodsStrategic PlanningStructureSymptomsTimeTreatment outcomeUnited States National Institutes of HealthValidationanalytical toolbehavior changeclinical biomarkerscohortcomputer frameworkdenoisingdepressive symptomsdisorder subtypeeffective therapyendophenotypefeature extractiongraphical user interfaceimaging modalityimaging studyimprovedindependent component analysisindividualized medicineinnovationinsightlearning strategylongitudinal analysismagnetic resonance imaging/electroencephalographymethod developmentmultidimensional datamultimodal neuroimagingmultimodalityneuralneural circuitneural networkneurobiological mechanismneuroimagingneuroimaging markernovelpredict clinical outcomepredictive modelingpredictive toolstooltreatment planningtreatment responseuser friendly software
项目摘要
Project Summary/Abstract
Recent mental health studies have led to an expanded depth of multimodal brain imaging data, clinical
assessments and physiological data. In addition, longitudinal studies have become increasingly important to
capture the trajectory of disease progression, treatment response and relapse. This wealth of datasets
provides an unprecedented opportunity for crosscutting investigations. However, much-needed statistical
methods for exploring discoveries are lacking. In particular, there has been very limited development of
advanced statistical methods for several important objectives: decompose observed brain connectivity
measures to reveal underlying neural circuits which are key biomarkers for mental disorders, effectively extract
low dimensional neural features from imaging to reliably predict clinical outcomes such as treatment response,
and analyze longitudinal multidimensional data including neuroimaging, clinical and behavioral assessments to
study the dynamic interplay between brain and behavior changes due to treatments.
In this competing renewal proposal, we will build upon the theoretical and computational framework
established in our previous award to develop rigorous and computationally efficient statistical methods to
address the aforementioned objectives. Specifically, we plan to develop 1) a sparse and low rank ICA (SLR-
ICA) framework for reliable and parsimonious decomposition of brain connectivity measures to reveal
underlying neural circuits associated with specific clinical symptoms in mental disorders; 2) an ICA-Neural
Network (ICA-NN) predictive model that effectively extracts relevant low dimensional linear and non-linear
neural features to predict clinical outcomes; and (3) longitudinal multidimensional data analysis tools for
investigating heterogeneous changes in neural circuits due to different treatments and disease subtypes, and
disentangle the relationship between changes in neuroimaging phenotypes and clinical symptoms. The
statistical methods will be applied to a major NIH funded longitudinal study of major depressive disorder (MDD)
to help discover neural circuits underlying specific depressive symptoms (e.g. suicidal thoughts) and differential
treatment response, and ultimately help lead to more effective treatment for individual MDD patients based on
his/her own neural circuitry fingerprints and behavior. We plan to replicate the findings using an independent
validation cohort from an R01 study of MDD. User-friendly software will be made available to general research
communities. Our proposed method developments will directly benefit mental health research by providing
innovative statistical tools to effectively extract reliable and highly relevant low dimensional features from
neuroimaging to deepen mechanistic understanding and improve treatment of MDD and other mental
disorders.
项目概要/摘要
最近的心理健康研究扩大了多模式脑成像数据、临床数据的深度
评估和生理数据。此外,纵向研究对于
捕捉疾病进展、治疗反应和复发的轨迹。如此丰富的数据集
为跨领域调查提供了前所未有的机会。然而,急需的统计数据
缺乏探索发现的方法。特别是,其发展非常有限。
先进的统计方法可实现几个重要目标:分解观察到的大脑连接
揭示潜在神经回路的措施,这是精神障碍的关键生物标志物,有效提取
来自成像的低维神经特征可以可靠地预测临床结果,例如治疗反应,
并分析纵向多维数据,包括神经影像、临床和行为评估,以
研究大脑与治疗引起的行为变化之间的动态相互作用。
在这个竞争性的更新提案中,我们将建立在理论和计算框架的基础上
我们在上一个奖项中设立的目标是开发严格且计算高效的统计方法
实现上述目标。具体来说,我们计划开发 1) 稀疏低阶 ICA (SLR-
ICA)框架,用于可靠且简约地分解大脑连接测量以揭示
与精神障碍特定临床症状相关的潜在神经回路; 2) ICA 神经网络
有效提取相关低维线性和非线性的网络(ICA-NN)预测模型
预测临床结果的神经特征; (3)纵向多维数据分析工具
研究由于不同治疗和疾病亚型导致的神经回路的异质变化,以及
理清神经影像表型变化与临床症状之间的关系。这
统计方法将应用于 NIH 资助的重度抑郁症 (MDD) 纵向研究
帮助发现特定抑郁症状(例如自杀念头)背后的神经回路和差异
治疗反应,最终有助于为个体 MDD 患者提供更有效的治疗
他/她自己的神经回路指纹和行为。我们计划使用独立的机构来重复研究结果
MDD R01 研究的验证队列。用户友好的软件将可供一般研究使用
社区。我们提出的方法开发将通过提供直接有利于心理健康研究
创新的统计工具,可有效地从中提取可靠且高度相关的低维特征
神经影像学可加深对机制的理解并改善 MDD 和其他精神疾病的治疗
失调。
项目成果
期刊论文数量(75)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Bayesian nonparametric model for spatially distributed multivariate binary data with application to a multidrug-resistant tuberculosis (MDR-TB) study.
空间分布多元二元数据的贝叶斯非参数模型及其在耐多药结核病 (MDR-TB) 研究中的应用。
- DOI:
- 发表时间:2014-12
- 期刊:
- 影响因子:1.9
- 作者:Kang, Jian;Zhang, Nanhua;Shi, Ran
- 通讯作者:Shi, Ran
A Bayesian hierarchical model with novel prior specifications for estimating HIV testing rates.
具有新颖先验规范的贝叶斯分层模型,用于估计 HIV 检测率。
- DOI:
- 发表时间:2016-04-30
- 期刊:
- 影响因子:2
- 作者:An, Qian;Kang, Jian;Song, Ruiguang;Hall, H Irene
- 通讯作者:Hall, H Irene
Estimating dynamic brain functional networks using multi-subject fMRI data.
使用多受试者功能磁共振成像数据估计动态大脑功能网络。
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:5.7
- 作者:Kundu, Suprateek;Ming, Jin;Pierce, Jordan;McDowell, Jennifer;Guo, Ying
- 通讯作者:Guo, Ying
A Multimodal Multilevel Neuroimaging Model for Investigating Brain Connectome Development.
用于研究大脑连接体发育的多模式多层次神经影像模型。
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:3.7
- 作者:Hu, Yingtian;Zeydabadinezhad, Mahmoud;Li, Longchuan;Guo, Ying
- 通讯作者:Guo, Ying
Prior Knowledge Guided Ultra-high Dimensional Variable Screening with Application to Neuroimaging Data.
先验知识引导超高维变量筛选及其在神经影像数据中的应用。
- DOI:
- 发表时间:2022-10
- 期刊:
- 影响因子:1.4
- 作者:He, Jie;Kang, Jian
- 通讯作者:Kang, Jian
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ying Guo其他文献
Ying Guo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ying Guo', 18)}}的其他基金
Statistical Methods for Analyzing Complex, Multi-dimensional Data from Cross-sectional and Longitudinal Mental Health Studies
分析来自横断面和纵向心理健康研究的复杂、多维数据的统计方法
- 批准号:
10159966 - 财政年份:2019
- 资助金额:
$ 51.7万 - 项目类别:
Statistical Methods for Analyzing Complex, Multi-dimensional Data from Cross-sectional and Longitudinal Mental Health Studies
分析来自横断面和纵向心理健康研究的复杂、多维数据的统计方法
- 批准号:
10611987 - 财政年份:2019
- 资助金额:
$ 51.7万 - 项目类别:
Statistical Methods for Analyzing Complex, Multi-dimensional Data from Cross-sectional and Longitudinal Mental Health Studies
分析来自横断面和纵向心理健康研究的复杂、多维数据的统计方法
- 批准号:
10396640 - 财政年份:2019
- 资助金额:
$ 51.7万 - 项目类别:
Statistical Methods for Analyzing Complex, Multi-dimensional Data from Cross-sectional and Longitudinal Mental Health Studies
分析来自横断面和纵向心理健康研究的复杂、多维数据的统计方法
- 批准号:
9978956 - 财政年份:2019
- 资助金额:
$ 51.7万 - 项目类别:
Statistical ICA Methods for Analysis and Integration of Multi-dimensional Data
多维数据分析与整合的统计ICA方法
- 批准号:
8802230 - 财政年份:2014
- 资助金额:
$ 51.7万 - 项目类别:
Statistical ICA Methods for Analysis and Integration of Multi-dimensional Data
多维数据分析与整合的统计ICA方法
- 批准号:
9110314 - 财政年份:2014
- 资助金额:
$ 51.7万 - 项目类别:
Statistical ICA Methods for Analysis and Integration of Multi-dimensional Data
多维数据分析与整合的统计ICA方法
- 批准号:
10264896 - 财政年份:2014
- 资助金额:
$ 51.7万 - 项目类别:
Statistical ICA Methods for Analysis and Integration of Multi-dimensional Data
多维数据分析与整合的统计ICA方法
- 批准号:
10475127 - 财政年份:2014
- 资助金额:
$ 51.7万 - 项目类别:
Statistical ICA Methods for Analysis and Integration of Multi-dimensional Data
多维数据分析与整合的统计ICA方法
- 批准号:
9282512 - 财政年份:2014
- 资助金额:
$ 51.7万 - 项目类别:
Method Development of Agreement Measures and Applications in Mental Health
协议措施的方法开发及其在心理健康中的应用
- 批准号:
9144441 - 财政年份:2008
- 资助金额:
$ 51.7万 - 项目类别:
相似国自然基金
减少编程错误:基于认证内核的全新的快捷依赖类型PiSigma高级编程语言开发
- 批准号:61070023
- 批准年份:2010
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
Development of a novel small molecule RPN13 inhibitor and therapeutic for advanced ovarian cancer patients
开发新型小分子 RPN13 抑制剂和治疗晚期卵巢癌患者的药物
- 批准号:
10760824 - 财政年份:2023
- 资助金额:
$ 51.7万 - 项目类别:
Probing the cardioprotective effects of sulfane sulfurs with next generation fluorescent sensors
使用下一代荧光传感器探讨硫烷硫的心脏保护作用
- 批准号:
10749202 - 财政年份:2023
- 资助金额:
$ 51.7万 - 项目类别:
Employing Novel Primary Mouse Models of Head and Neck Cancer to Overcome Chemoradiation Resistance
采用新型头颈癌原发小鼠模型来克服放化疗耐药性
- 批准号:
10918580 - 财政年份:2023
- 资助金额:
$ 51.7万 - 项目类别:
Mentoring patient-oriented researchers in pediatric diarrhea
指导以患者为中心的小儿腹泻研究人员
- 批准号:
10591728 - 财政年份:2023
- 资助金额:
$ 51.7万 - 项目类别: