Statistical Methods for Analyzing Complex, Multi-dimensional Data from Cross-sectional and Longitudinal Mental Health Studies
分析来自横断面和纵向心理健康研究的复杂、多维数据的统计方法
基本信息
- 批准号:10159966
- 负责人:
- 金额:$ 61.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-16 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:Accident and Emergency departmentAddressAmygdaloid structureBehavioral SymptomsBiologicalBiological MarkersChild Sexual AbuseClinicalClinical assessmentsComplexDataDemographic FactorsDependenceDevelopmentDiagnosisDiagnosticDimensionsDiseaseDisease ManagementEnvironmental Risk FactorFaceFrightFunctional disorderFutureGrantHeterogeneityImageImpact evaluationIndividualKnowledgeMapsMeasurementMental HealthMental disordersMethodologyMethodsModelingNational Institute of Mental HealthNeurobiologyNoiseOutcomePatternPhenotypePost-Traumatic Stress DisordersProceduresPsyche structurePsychiatryPsychophysiologyPublic HealthReproducibilityResearchSeveritiesSignal TransductionStatistical MethodsStimulusStrategic PlanningStructureSymptomsTraumaUnited StatesValidationanalytical methodbasebrain behaviorburden of illnessclinical predictorscohortfeature extractionflexibilityhigh dimensionalityhigh riskimprovedindividual variationinsightlarge datasetslearning strategymultidimensional dataneural circuitneurobiological mechanismneuroimagingneuroimaging markernovelpatient populationpost-traumapredict clinical outcomerecruitrelating to nervous systemresponsestatistical learningtrauma exposuretrauma symptomuser friendly softwarevector
项目摘要
Project Summary
To address the burden of mental illness, National institute of Mental Health encourages development of
computational approaches that provide novel ways to understand relationships among complex, large datasets
to further the understanding of the underlying pathophysiology of mental diseases. These datasets are multi-
dimensional, including clinical assessments, behavioral symptoms, biological measurements such as neu-
roimaging and psychophysiological data. The overall objective of this grant is to advance methodology for
analyzing such data to more effectively extract relevant information that are predictive of disease, to improve
the understanding of individual variability in clinical and neurobiological phenotypes, and to provide the capac-
ity to handle both cross-sectional and longitudinal data.
Our proposal will leverage two civilian trauma cohorts recruited through the Grady Trauma Project and
the Grady Emergency Department Study, and an external validation cohort from the Hill Center study with a
similar distribution of trauma exposure. We propose to develop statistically principled, computationally effi-
cient statistical learning methods for addressing key challenges in analyzing these large datasets. Challenges
include multi-type outcomes, high dimensional data with sparse signals and high noise levels, spatial and tem-
poral dependence of neuroimaging data, and heterogeneous effects across patient population. The scientific
premise of this computational psychiatry research is that analytical methods integrating information
from brain, behavior, and symptoms will provide much-needed data driven platforms for improving
diagnosis and prediction of PTSD and other mental disorders.
In this application, we propose: (1) to develop partial generalized tensor regression methods and partial
tensor quantile regression methods that can simultaneously achieve accurate prediction of clinical outcomes
and efficient feature extraction from high dimensional neuroimaging biomarkers; (2) to develop tensor response
quantile regression methods and global inference that can achieve comprehensive and robust understanding
of the heterogeneity in high-dimensional neuroimaging phenotypes in terms of environmental factors such as
trauma exposure; and (3) to develop and extend methods in Aims 1 and 2 for longitudinal multi-dimensional
data that will enable prediction of future post-trauma symptom severity trajectories in terms of neuroimaging
biomarkers and robustify the evaluation of the impact of psychophysiological factors on neuroimaging phe-
notypes. The proposed methods will be applied to the two Grady studies to address scientific hypotheses
relevant to PTSD research. We will use the Hill Center study as an independent validation cohort to evaluate
the reproducibility and generalizability of the findings. User-friendly software will be developed. The proposed
methodology is generally applicable to many other mental health studies with complex multi-dimensional data.
项目概要
为了解决精神疾病的负担,国家精神卫生研究所鼓励发展
计算方法提供了理解复杂、大型数据集之间关系的新方法
进一步了解精神疾病的潜在病理生理学。
维度,包括临床评估、行为症状、生物测量,例如神经
此项资助的总体目标是推进成像和心理生理学数据的方法。
分析此类数据以更有效地提取预测疾病的相关信息,以改善
了解临床和神经生物学表型的个体差异,并提供能力
能够处理横截面和纵向数据。
我们的提案将利用通过格雷迪创伤项目招募的两个平民创伤群体
格雷迪急诊室研究,以及来自希尔中心研究的外部验证队列
我们建议开发理论上、计算上的效率。
用于解决分析这些大型数据集的关键挑战的科学统计学习方法。
包括多类型结果、具有稀疏信号和高噪声水平的高维数据、空间和温度
神经影像数据的极性依赖性以及患者群体的异质效应。
这项计算精神病学研究的前提是整合信息的分析方法
来自大脑、行为和症状的数据将为改善症状提供急需的数据驱动平台
PTSD 和其他精神障碍的诊断和预测。
在此应用中,我们建议:(1)开发部分广义张量回归方法和部分
张量分位数回归方法,可同时实现临床结果的准确预测
从高维神经影像生物标志物中有效提取特征(2)以开发张量响应;
分位数回归方法和全局推理,可以实现全面而稳健的理解
高维神经影像表型在环境因素方面的异质性,例如
创伤暴露;(3) 开发和扩展目标 1 和 2 中的纵向多维方法
这些数据将能够根据神经影像学预测未来的创伤后症状严重程度轨迹
生物标志物并加强心理生理因素对神经影像学影响的评估
所提出的方法将应用于两项格雷迪研究以解决科学假设。
我们将使用希尔中心研究作为独立验证队列来评估。
将开发用户友好的软件。
该方法通常适用于许多其他具有复杂多维数据的心理健康研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ying Guo其他文献
Ying Guo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ying Guo', 18)}}的其他基金
Statistical Methods for Analyzing Complex, Multi-dimensional Data from Cross-sectional and Longitudinal Mental Health Studies
分析来自横断面和纵向心理健康研究的复杂、多维数据的统计方法
- 批准号:
10611987 - 财政年份:2019
- 资助金额:
$ 61.41万 - 项目类别:
Statistical Methods for Analyzing Complex, Multi-dimensional Data from Cross-sectional and Longitudinal Mental Health Studies
分析来自横断面和纵向心理健康研究的复杂、多维数据的统计方法
- 批准号:
10396640 - 财政年份:2019
- 资助金额:
$ 61.41万 - 项目类别:
Statistical Methods for Analyzing Complex, Multi-dimensional Data from Cross-sectional and Longitudinal Mental Health Studies
分析来自横断面和纵向心理健康研究的复杂、多维数据的统计方法
- 批准号:
9978956 - 财政年份:2019
- 资助金额:
$ 61.41万 - 项目类别:
Statistical ICA Methods for Analysis and Integration of Multi-dimensional Data
多维数据分析与整合的统计ICA方法
- 批准号:
8802230 - 财政年份:2014
- 资助金额:
$ 61.41万 - 项目类别:
Statistical ICA Methods for Analysis and Integration of Multi-dimensional Data
多维数据分析与整合的统计ICA方法
- 批准号:
9110314 - 财政年份:2014
- 资助金额:
$ 61.41万 - 项目类别:
Statistical ICA Methods for Analysis and Integration of Multi-dimensional Data
多维数据分析与整合的统计ICA方法
- 批准号:
10687870 - 财政年份:2014
- 资助金额:
$ 61.41万 - 项目类别:
Statistical ICA Methods for Analysis and Integration of Multi-dimensional Data
多维数据分析与整合的统计ICA方法
- 批准号:
10264896 - 财政年份:2014
- 资助金额:
$ 61.41万 - 项目类别:
Statistical ICA Methods for Analysis and Integration of Multi-dimensional Data
多维数据分析与整合的统计ICA方法
- 批准号:
10475127 - 财政年份:2014
- 资助金额:
$ 61.41万 - 项目类别:
Statistical ICA Methods for Analysis and Integration of Multi-dimensional Data
多维数据分析与整合的统计ICA方法
- 批准号:
9282512 - 财政年份:2014
- 资助金额:
$ 61.41万 - 项目类别:
Method Development of Agreement Measures and Applications in Mental Health
协议措施的方法开发及其在心理健康中的应用
- 批准号:
9144441 - 财政年份:2008
- 资助金额:
$ 61.41万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Acute predictors of long-term post-trauma outcomes in youth victims of violence
青年暴力受害者长期创伤后结果的急性预测因素
- 批准号:
10441367 - 财政年份:2020
- 资助金额:
$ 61.41万 - 项目类别:
Acute predictors of long-term post-trauma outcomes in youth victims of violence
青年暴力受害者长期创伤后结果的急性预测因素
- 批准号:
10237892 - 财政年份:2020
- 资助金额:
$ 61.41万 - 项目类别:
Acute predictors of long-term post-trauma outcomes in youth victims of violence
青年暴力受害者长期创伤后结果的急性预测因素
- 批准号:
10441367 - 财政年份:2020
- 资助金额:
$ 61.41万 - 项目类别:
Statistical Methods for Analyzing Complex, Multi-dimensional Data from Cross-sectional and Longitudinal Mental Health Studies
分析来自横断面和纵向心理健康研究的复杂、多维数据的统计方法
- 批准号:
10611987 - 财政年份:2019
- 资助金额:
$ 61.41万 - 项目类别:
Statistical Methods for Analyzing Complex, Multi-dimensional Data from Cross-sectional and Longitudinal Mental Health Studies
分析来自横断面和纵向心理健康研究的复杂、多维数据的统计方法
- 批准号:
10396640 - 财政年份:2019
- 资助金额:
$ 61.41万 - 项目类别: