Statistical ICA Methods for Analysis and Integration of Multi-dimensional Data
多维数据分析与整合的统计ICA方法
基本信息
- 批准号:9110314
- 负责人:
- 金额:$ 38.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-25 至 2018-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressBehaviorBehavioral SciencesBiologicalBrainClinical ResearchCognitionCommunitiesComplexDataData ReportingData SetDiagnosisDiffusion Magnetic Resonance ImagingDimensionsDiseaseEarly DiagnosisFunctional Magnetic Resonance ImagingGenesGeneticGenetic DeterminismGenomicsGenotypeGoalsHealthImageImaging TechniquesInvestigationJointsKnowledgeLibrariesLinkMagnetic Resonance ImagingMajor Depressive DisorderMeasuresMental DepressionMental HealthMental disordersMethodologyMethodsModelingMotivationMultimodal ImagingNatureNeurobiologyNoiseOutcomePatternResearchScientific Advances and AccomplishmentsSignal TransductionSingle Nucleotide PolymorphismSourceStatistical MethodsStructureSystemTestingWorkblinddiscrete datagenetic associationgenetic profilinggraphical user interfaceimaging geneticsimprovedindependent component analysisinfancyinnovationinsightinterestmethod developmentneuroimagingnoveltooltreatment responseuser friendly software
项目摘要
DESCRIPTION (provided by applicant): Study of mental disorders has entered into an exciting new era where biological measures from multiple platforms such as neuroimaging and genetics are being collected to help deepen the understanding of the disorders and improve diagnosis and treatment. Multi-dimensional data are becoming more common and hold great promise for advancing mental health research. However, effective statistical methods for extracting useful and complementary information from multi-dimensional data are still in their infancy. One of the major challenges is that multi-dimensional data often have different scales (continuous/discrete), data representations (scalar/array/matrix) and dimensions. Current analytical approaches typically conduct separate analysis within each dimension or apply simple correlative analyses. These methods are of very limited nature for uncovering latent patterns and associations in these data. This project seeks to develop novel statistical independent component analysis (ICA) methods to provide effective tools for reducing dimension, denoising and extracting features from large- scale multi-dimensional data. Specifically, the proposed methods would 1) provide a unified framework for decomposing and integrating multimodal neuroimaging data such as fMRI and DTI, 2) provide a discrete ICA model for extracting latent signals from large-scale discrete outcomes such as single-nucleotide polymorphism (SNP) genotype data, and 3) provide a joint ICA model for simultaneously decomposing neuroimaging and SNP genotype data to extract integrated imaging genetics features. The proposed statistical methods will be applied to a major depressive disorder (MDD) study, and user-friendly software will be developed and made available to general research communities. Our proposed method developments will directly benefit mental health research by providing innovative statistical tools
to combine information from multi-dimensional datasets that can facilitate diagnosis, deepen mechanistic understanding and improve treatment of mental disorders. Our methods are also ubiquitous enough to be generally useful to statistical practice.
描述(由申请人提供):精神疾病的研究已经进入了一个令人兴奋的新时代,来自神经影像和遗传学等多个平台的生物测量值正在被收集,以帮助加深对疾病的理解并改进诊断和治疗。多维数据正变得越来越普遍,并为推进心理健康研究带来了巨大希望。然而,从多维数据中提取有用和补充信息的有效统计方法仍处于起步阶段。主要挑战之一是多维数据通常具有不同的尺度(连续/离散)、数据表示(标量/数组/矩阵)和维度。当前的分析方法通常在每个维度内进行单独分析或应用简单的相关分析。这些方法对于揭示这些数据中的潜在模式和关联来说非常有限。该项目旨在开发新颖的统计独立成分分析(ICA)方法,为大规模多维数据降维、去噪和提取特征提供有效的工具。具体来说,所提出的方法将1)提供一个统一的框架来分解和整合多模态神经影像数据,如fMRI和DTI,2)提供一个离散的ICA模型,用于从大规模离散结果中提取潜在信号,如单核苷酸多态性(SNP) ) 基因型数据,3) 提供联合 ICA 模型,用于同时分解神经影像和 SNP 基因型数据,以提取综合影像遗传学特征。拟议的统计方法将应用于重度抑郁症(MDD)研究,并且将开发用户友好的软件并向一般研究团体提供。我们提出的方法开发将通过提供创新的统计工具直接有利于心理健康研究
结合来自多维数据集的信息,可以促进诊断、加深对机制的理解并改善精神障碍的治疗。我们的方法也足够普遍,对统计实践普遍有用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ying Guo其他文献
Ying Guo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ying Guo', 18)}}的其他基金
Statistical Methods for Analyzing Complex, Multi-dimensional Data from Cross-sectional and Longitudinal Mental Health Studies
分析来自横断面和纵向心理健康研究的复杂、多维数据的统计方法
- 批准号:
10159966 - 财政年份:2019
- 资助金额:
$ 38.72万 - 项目类别:
Statistical Methods for Analyzing Complex, Multi-dimensional Data from Cross-sectional and Longitudinal Mental Health Studies
分析来自横断面和纵向心理健康研究的复杂、多维数据的统计方法
- 批准号:
10611987 - 财政年份:2019
- 资助金额:
$ 38.72万 - 项目类别:
Statistical Methods for Analyzing Complex, Multi-dimensional Data from Cross-sectional and Longitudinal Mental Health Studies
分析来自横断面和纵向心理健康研究的复杂、多维数据的统计方法
- 批准号:
10396640 - 财政年份:2019
- 资助金额:
$ 38.72万 - 项目类别:
Statistical Methods for Analyzing Complex, Multi-dimensional Data from Cross-sectional and Longitudinal Mental Health Studies
分析来自横断面和纵向心理健康研究的复杂、多维数据的统计方法
- 批准号:
9978956 - 财政年份:2019
- 资助金额:
$ 38.72万 - 项目类别:
Statistical ICA Methods for Analysis and Integration of Multi-dimensional Data
多维数据分析与整合的统计ICA方法
- 批准号:
8802230 - 财政年份:2014
- 资助金额:
$ 38.72万 - 项目类别:
Statistical ICA Methods for Analysis and Integration of Multi-dimensional Data
多维数据分析与整合的统计ICA方法
- 批准号:
10687870 - 财政年份:2014
- 资助金额:
$ 38.72万 - 项目类别:
Statistical ICA Methods for Analysis and Integration of Multi-dimensional Data
多维数据分析与整合的统计ICA方法
- 批准号:
10264896 - 财政年份:2014
- 资助金额:
$ 38.72万 - 项目类别:
Statistical ICA Methods for Analysis and Integration of Multi-dimensional Data
多维数据分析与整合的统计ICA方法
- 批准号:
10475127 - 财政年份:2014
- 资助金额:
$ 38.72万 - 项目类别:
Statistical ICA Methods for Analysis and Integration of Multi-dimensional Data
多维数据分析与整合的统计ICA方法
- 批准号:
9282512 - 财政年份:2014
- 资助金额:
$ 38.72万 - 项目类别:
Method Development of Agreement Measures and Applications in Mental Health
协议措施的方法开发及其在心理健康中的应用
- 批准号:
9144441 - 财政年份:2008
- 资助金额:
$ 38.72万 - 项目类别:
相似国自然基金
行为科学视角下人类个体差异性对人机合作信任的影响研究
- 批准号:62006121
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
考虑客户与员工行为的多技能呼叫中心集成排班优化方法研究
- 批准号:71271052
- 批准年份:2012
- 资助金额:53.0 万元
- 项目类别:面上项目
高风险企业生产事故的发生机制:行为科学的研究
- 批准号:70501035
- 批准年份:2005
- 资助金额:16.6 万元
- 项目类别:青年科学基金项目
复杂社会技术系统安全的前馈与反馈:行为科学的研究
- 批准号:70401018
- 批准年份:2004
- 资助金额:15.0 万元
- 项目类别:青年科学基金项目
煤矿事故预防的行为科学方法定量化试验研究
- 批准号:50474032
- 批准年份:2004
- 资助金额:28.0 万元
- 项目类别:面上项目
相似海外基金
Early life metal exposure, the gut microbiome, and neurodevelopment in childhood
生命早期的金属暴露、肠道微生物组和儿童期的神经发育
- 批准号:
10883857 - 财政年份:2023
- 资助金额:
$ 38.72万 - 项目类别:
Project 3: Primary Prevention and Uterine Preservation in Premenopausal Women with Obesity and Endometrial Hyperplasia/Cancer
项目3:绝经前妇女肥胖和子宫内膜增生/癌症的一级预防和子宫保留
- 批准号:
10711638 - 财政年份:2023
- 资助金额:
$ 38.72万 - 项目类别:
A Biobehavioral Intervention to Reduce Adverse Outcomes in Young Adult Testicular Cancer Survivors
减少年轻成年睾丸癌幸存者不良后果的生物行为干预
- 批准号:
10736501 - 财政年份:2023
- 资助金额:
$ 38.72万 - 项目类别:
Genotyping the Understanding America Study to generate novel opportunities for research on cognitive functioning and dementia
对“理解美国研究”进行基因分型,为认知功能和痴呆症研究创造新机会
- 批准号:
10663049 - 财政年份:2023
- 资助金额:
$ 38.72万 - 项目类别:
Genotyping the Understanding America Study to generate novel opportunities for research on cognitive functioning and dementia
对“理解美国研究”进行基因分型,为认知功能和痴呆症研究创造新机会
- 批准号:
10663049 - 财政年份:2023
- 资助金额:
$ 38.72万 - 项目类别: