Methods Core
方法核心
基本信息
- 批准号:10688229
- 负责人:
- 金额:$ 110.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-22 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:AreaBig DataCaringCommunicationCommunitiesConsultationsCriminal JusticeDataData AnalysesData AnalyticsData LinkagesData SetDiffusionEducational InterventionEffectiveness of InterventionsElectronic Health RecordEthicsGeneral PopulationGood Clinical PracticeHealthHealth ServicesHealth systemHealthcareHybridsIncubatedIndividualInformation SystemsInterceptInterventionJailJusticeManaged CareManualsMeasuresMental HealthMethodologyMethodsModelingOutcomePersonsPilot ProjectsPolicePoliciesPopulationPopulations at RiskPositioning AttributePreventionPrevention ResearchPrevention approachProcessProductivityPublic HealthReproducibilityResearchResearch DesignResearch MethodologyResearch PersonnelResearch Project GrantsResourcesRiskSafetyServicesStreamSuicideSuicide preventionSystemTarget PopulationsTimeTrainingTranslationsWomanWorkbehavioral healthbiomedical informaticscost-effectiveness evaluationdata integrationdesigneconomic evaluationeffectiveness evaluationeffectiveness testingeffectiveness/implementation studyethnic diversityevidence baseexperiencehealth care service utilizationhealth economicshealth equityhigh riskhigh risk populationimplementation scienceinnovationmennovelnovel strategiesprevention effectivenesspreventive interventionracial diversityresponsestakeholder perspectivesstandard caresuicidal risksuicide modelsystems researchtranslational pipelineuptake
项目摘要
The Methods Core supports a Signature Project, 3 Exploratory Projects, and 4-6 Pilot Feasibility Projects
focused on health-justice big data linkage to enable effective and scalable suicide prevention approaches at
justice intercepts (i.e., places behavioral health services can intercept a justice trajectory to change behavioral
health outcomes). This Core provides resources to support rigorous, reproducible research that shares similar
conceptual frameworks, methods, and measures. Center Methods are innovative in that they:
1. Establish a suicide prevention effectiveness evidence base for our large, high-risk target population.
2. Create an n~110,000 combined Center dataset that will be diverse and will be an asset to the field.
3. Develop, manualize, and refine strategies for scalability, sustainability, and large-scale translation, to
move the field forward for these important but understudied areas of implementation science.
4. Use contact with the justice system (e.g., police contact, arrest), as a novel indicator of suicide risk in the
general population (i.e., a “novel data type”) to identify at-risk individuals not well-connected with care
5. Demonstrate how health and justice system big data linkage is achieved and can be used to automate
and conduct suicide risk identification and response across health and justice systems at scale.
6. Leverage the Mental Health Research Network’s (MHRN’s) methods for extracting suicide-related and
healthcare utilization outcomes from claims and electronic health record (EHR) data.
7. Use sociometric identification of policy entrepreneurs to promote diffusion of Center approaches (Aim 4)
8. Partner with managed care organizations for suicide risk identification and prevention at justice intercepts
9. Convene health, justice, and suicide prevention communities, constituencies who do not often work
together, to create novel solutions to a common problem.
The Methods Core supports the Center through the following Specific Aims:
1. Engage Consortium Partners, promoting utility, uptake, scalability, & sustainability of Center findings
2. Incubate and generate innovative approaches to suicide prevention
3. Facilitate design and conduct of Center research projects, including transforming Center projects into
Hybrid effectiveness-implementation studies to promote scalability and sustainability of interventions
4. Disseminate Center methods and solutions and build national capacity for justice, health, and suicide
prevention cross-system research
5. Evaluate the Center’s processes, progress, productivity and impact
The Center is designed to shorten the translational pipeline through scalable solutions, hybrid trials, strong
stakeholder integration, and a strong dissemination plan. Strong integration of Methods Core Work Streams
and stakeholder perspectives will advance Center public health impact.
方法核心支持一个签名项目、3 个探索性项目和 4-6 个试点可行性项目
专注于健康与司法大数据链接,以实现有效且可扩展的自杀预防方法
司法拦截(即行为健康服务可以拦截司法轨迹以改变行为
该核心提供资源来支持具有相似性的严格、可重复的研究。
概念框架、方法和措施 中心方法的创新之处在于:
1. 为我们庞大的高风险目标人群建立自杀预防有效性证据基础。
2. 创建一个 n~110,000 个组合中心数据集,该数据集将是多样化的并且将成为该领域的资产。
3. 制定、手动化和完善可扩展性、可持续性和大规模翻译策略,以
推动这些重要但尚未充分研究的实施科学领域的发展。
4. 利用与司法系统的联系(例如警察联系、逮捕)作为自杀风险的新指标
一般人群(即“新数据类型”)来识别与护理联系不紧密的高危个体
5. 演示如何实现卫生和司法系统大数据联动并用于自动化
并在卫生和司法系统中大规模开展自杀风险识别和应对。
6. 利用心理健康研究网络 (MHRN) 的方法来提取与自杀相关的和
来自索赔和电子健康记录 (EHR) 数据的医疗保健利用结果。
7. 利用政策企业家的社会计量识别来促进中心方法的传播(目标 4)
8. 与管理式医疗组织合作,在司法拦截中识别和预防自杀风险
9. 召集健康、司法和自杀预防社区以及不经常工作的选区
共同为共同问题创造新颖的解决方案。
方法核心通过以下具体目标支持该中心:
1. 与联盟合作伙伴合作,促进中心研究结果的实用性、吸收性、可扩展性和可持续性
2. 孵化和产生预防自杀的创新方法
3. 促进中心研究项目的设计和实施,包括将中心项目转化为
混合有效性实施研究,以促进干预措施的可扩展性和可持续性
4. 传播中心的方法和解决方案,建设国家司法、健康和自杀方面的能力
预防跨系统研究
5. 评估中心的流程、进展、生产力和影响
该中心旨在通过可扩展的解决方案、混合试验、强大的
利益相关者整合,以及强大的传播计划 方法核心工作流的强大整合。
利益相关者的观点将促进中心对公共卫生的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JENNIFER E JOHNSON其他文献
JENNIFER E JOHNSON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JENNIFER E JOHNSON', 18)}}的其他基金
Maternal Health Multilevel Intervention/s for Racial Equity (MIRACLE) Center
孕产妇保健种族平等多层次干预 (MIRACLE) 中心
- 批准号:
10755548 - 财政年份:2023
- 资助金额:
$ 110.54万 - 项目类别:
The ROSE Scale-Up Study: Informing a decision about ROSE as universal postpartum depression prevention
ROSE 扩大研究:为有关 ROSE 作为通用产后抑郁症预防的决定提供信息
- 批准号:
10523220 - 财政年份:2022
- 资助金额:
$ 110.54万 - 项目类别:
The ROSE Scale-Up Study: Informing a decision about ROSE as universal postpartum depression prevention
ROSE 扩大研究:为有关 ROSE 作为通用产后抑郁症预防的决定提供信息
- 批准号:
10679085 - 财政年份:2022
- 资助金额:
$ 110.54万 - 项目类别:
The ROSE Scale-Up Study: Informing a decision about ROSE as universal postpartum depression prevention
ROSE 扩大研究:为有关 ROSE 作为通用产后抑郁症预防的决定提供信息
- 批准号:
10523220 - 财政年份:2022
- 资助金额:
$ 110.54万 - 项目类别:
IPT for major depression following perinatal loss
IPT 治疗围产期流产后重度抑郁症
- 批准号:
10665702 - 财政年份:2020
- 资助金额:
$ 110.54万 - 项目类别:
相似国自然基金
大数据时代面向非线性方程组求解的投影算法及其应用研究
- 批准号:62302331
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于杂交育种协同进化蚁群算法的工业大数据特征选择研究
- 批准号:62376089
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
大数据驱动的深层页岩压裂参数协同优化与实时调控研究
- 批准号:52374045
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于遥感大数据与机器学习的典型半干旱流域气候-植被-水文协同演变机制与模拟研究
- 批准号:52379002
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
大数据赋能和决策过程特征对知识共享与知识保护平衡的作用机制研究
- 批准号:72302179
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
FORUM ON MEDICAL AND PUBLIC HEALTH PREPAREDNESS FOR DISASTERS AND EMERGENCIES AND ACTION COLLABORATIVE ON DISASTERS/PUBLIC HEALTH EMERGENCY RESEARCH
灾害和紧急情况医疗和公共卫生防备论坛以及灾害/公共卫生紧急情况研究行动合作
- 批准号:
10937101 - 财政年份:2023
- 资助金额:
$ 110.54万 - 项目类别:
Assessing the Impact of Economic Policies on the Use of Pre-Exposure Prophylaxis in the United States
评估经济政策对美国使用暴露前预防的影响
- 批准号:
10698785 - 财政年份:2023
- 资助金额:
$ 110.54万 - 项目类别:
Massachusetts Center for Alzheimer and dEmeNtia behaVIoral reSearch In minOrity agiNg (Mass-ENVISION)
马萨诸塞州阿尔茨海默病和痴呆症少数群体行为研究中心 (Mass-ENVISION)
- 批准号:
10729789 - 财政年份:2023
- 资助金额:
$ 110.54万 - 项目类别:
Measuring and Learning from Care Variation in Sepsis
脓毒症护理变化的测量和学习
- 批准号:
10712986 - 财政年份:2023
- 资助金额:
$ 110.54万 - 项目类别: