SCH: Multidimensional Microfluidic Salivary Sensor with Adversarial Knowledge Distillation for Point-of-Care Assessment of Periodontitis and Comorbidities
SCH:具有对抗性知识蒸馏的多维微流控唾液传感器,用于牙周炎和合并症的护理点评估
基本信息
- 批准号:10685431
- 负责人:
- 金额:$ 29.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-23 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdultAreaArtificial IntelligenceAwarenessBioinformaticsBiological MarkersBiologyBiosensorCaringCategoriesClinicalCollectionCommunicationComputational BiologyDataData AnalysesData ReportingData ScienceDentalDentistsDetectionDevicesDiagnosisDiagnosticDimensionsDiseaseEarly DiagnosisElementsFutureGoalsHealthHealthcareHomeIndividualInflammationInflammatoryInterventionKnowledgeLab On A ChipLabelLearningMachine LearningMeasurementMeasuresMediatorMedicalMicrofluidic MicrochipsMicrofluidicsModalityMonitorMouth DiseasesNational Institute of Dental and Craniofacial ResearchOralOral healthOutputPainPatientsPeriodontal DiseasesPeriodontitisPrediabetes syndromePrivacyProcessResearchSalivaSalivarySamplingSecureSignal TransductionStudentsSystemSystemic diseaseTooth structureTrainingagedbonebone losscare systemsclinical decision supportclinical examinationcomorbiditycomputerized data processingcostcraniofacialdeep learningdesigndiagnostic valuedisease diagnosisdisorder controldisorder riskdiverse dataempowermenthuman subjectimprovedindexingindividual patientinnovationliquid biopsymachine learning frameworkmachine learning methodmachine learning modelmicrobialminiaturizemultimodalitynanonanoparticlenanoporenoveloral carepersonalized medicinepoint of carepredictive modelingprocedure costprogramsprototypepublic health relevancerisk predictionsensorsignal processingsoft tissuesolid stateteachertooltransmission processuser protectionuser-friendly
项目摘要
The goal of this research is to develop a sensor device prototype to rapidly measure an array of diverse
salivary biomarkers as input for novel machine learning (ML) methods that can predict periodontitis and
monitor periodontal progression. Our long-term goal is to develop a rapid, user-friendly, and low-cost pointof-care (POC) device, for use in either a dentist’s office or at home, that rapidly integrates and analyzes data
to support patient management. It addresses the priority area of the Data Science, Computational Biology,
and Bioinformatics Program of NIDCR in integrating and analyzing high-volume and diverse data to better
understand dental, oral, and craniofacial biology and diseases.
According to the CDC, nearly 50% adults have some form of periodontal disease. Perioodontitis is silently
progressive and patients often seek professional care only in an advanced stage where advanced, painful
and costly procedures are needed to control disease or replace lost teeth. Early detection of periodontal
disease at an individual patient level is required and there is growing awareness that multiple biomarkers are
valued in predicting risk of disease in individuals. We hypothesize that predictive models can be established
based on the measurements of a large set of periodontitis-associated biomarkers in saliva; a sensor device
that integrates multi-sensor modalities and the machine learning (ML) models will advance the clinical goal
of early diagnosis of periodontitis to enable earlier clinical interventions. Thus, we will develop and apply
three distinctive sensor modalities for detecting concentrations of salivary analytes relevant to various stages
of periodontal progression, i.e., inflammation, soft tissue destruction or bone destruction (Aim 1). Data from
both sensor outputs and clinical examination will be used to train ML models via a novel multi-modal
adversarial knowledge distillation ML framework, which promotes accurate early prediction with partial
longitudinal data representations (Aim 2). The multi-sensor modalities and the ML models will be embedded
in a single microfluidic device, incorporating steps such as sampling, detection, and data analysis as an
integrated lab-on-a-chip, and permitting the sensor data preprocessed to transmit only the actionable
information to the outside platform to protect the user's privacy (Aim 3). Such a device is anticipated to offer
for unobtrusive, accurate, and frequent saliva-based self-monitoring, and provide detailed medical data to
support clinical decisions. It will be an effective tool for future personalized medicine and dramatically
improve patients' oral health.
这项研究的目标是开发一种传感器设备原型来快速测量一系列不同的
唾液生物标志物作为新型机器学习(ML)方法的输入,可以预测牙周炎和
我们的长期目标是开发一种快速、用户友好且低成本的即时护理 (POC) 设备,可在牙医办公室或家庭中使用,可快速集成和交叉数据。
支持患者管理。它涉及数据科学、计算生物学、
NIDCR 的生物信息学项目整合和分析大量和多样化的数据,以更好地
了解牙科、口腔和颅面生物学和疾病。
根据疾病预防控制中心的数据,近 50% 的成年人患有某种形式的牙周炎。
进展性的,患者通常只有在晚期才寻求专业护理,此时晚期、疼痛
需要昂贵的手术来控制疾病或更换丢失的牙齿。
需要对个体患者水平的疾病进行研究,并且人们越来越意识到多种生物标志物是
我们率先建立了预测模型。
基于唾液中大量牙周炎相关生物标志物的测量;
集成多传感器模式和机器学习 (ML) 模型将推进临床目标
因此,我们将开发和应用牙周炎的早期诊断,以实现早期临床干预。
三种独特的传感器模式,用于检测与各个阶段相关的唾液分析物的浓度
牙周进展,即炎症、软组织破坏或骨质破坏(目标 1)。
传感器输出和临床检查都将用于通过新型多模态训练机器学习模型
对抗性知识蒸馏 ML 框架,通过部分内容促进准确的早期预测
将嵌入纵向数据表示(目标 2)。
在单个微流体装置中,将采样、检测和数据分析等步骤结合在一起
集成的片上实验室,并允许预处理的传感器数据仅传输可操作的
向外部平台提供信息以保护用户的隐私(目标 3)。
进行不引人注目、准确且频繁的基于唾液的自我监测,并提供详细的医疗数据
它将成为未来个性化医疗的有效工具,并显着支持临床决策。
改善患者的口腔健康。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mathew Thoppil Mathew其他文献
Differential toxicity of processed and non-processed states of CoCrMo degradation products generated from a hip simulator on neural cells
髋关节模拟器产生的 CoCrMo 降解产物的加工状态和未加工状态对神经细胞的不同毒性
- DOI:
10.1080/17435390.2018.1498929 - 发表时间:
2018-09-25 - 期刊:
- 影响因子:5
- 作者:
Divya Rani Bijukumar;Abhijith Segu;Yongchao Mou;R. Ghodsi;Tolou Shokufhar;M. Barba;Xue;Mathew Thoppil Mathew - 通讯作者:
Mathew Thoppil Mathew
Mathew Thoppil Mathew的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mathew Thoppil Mathew', 18)}}的其他基金
SCH: Multidimensional Microfluidic Salivary Sensor with Adversarial Knowledge Distillation for Point-of-Care Assessment of Periodontitis and Comorbidities
SCH:具有对抗性知识蒸馏的多维微流控唾液传感器,用于牙周炎和合并症的护理点评估
- 批准号:
10438075 - 财政年份:2021
- 资助金额:
$ 29.82万 - 项目类别:
SCH: Multidimensional Microfluidic Salivary Sensor with Adversarial Knowledge Distillation for Point-of-Care Assessment of Periodontitis and Comorbidities
SCH:具有对抗性知识蒸馏的多维微流控唾液传感器,用于牙周炎和合并症的护理点评估
- 批准号:
10493410 - 财政年份:2021
- 资助金额:
$ 29.82万 - 项目类别:
Tribocorrosion in Modular Hip Joint Junctions-A Parametric Mechanistic Study
模块化髋关节连接处的摩擦腐蚀——参数化机制研究
- 批准号:
8446887 - 财政年份:2012
- 资助金额:
$ 29.82万 - 项目类别:
Tribocorrosion in Modular Hip Joint Junctions-A Parametric Mechanistic Study
模块化髋关节连接处的摩擦腐蚀——参数化机制研究
- 批准号:
8771269 - 财政年份:2012
- 资助金额:
$ 29.82万 - 项目类别:
Tribocorrosion in Modular Hip Joint Junctions-A Parametric Mechanistic Study
模块化髋关节连接处的摩擦腐蚀——参数化机制研究
- 批准号:
8594222 - 财政年份:2012
- 资助金额:
$ 29.82万 - 项目类别:
相似国自然基金
基于动态信息的深度学习辅助设计成人脊柱畸形手术方案的研究
- 批准号:82372499
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SMC4/FoxO3a介导的CD38+HLA-DR+CD8+T细胞增殖在成人斯蒂尔病MAS发病中的作用研究
- 批准号:82302025
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
单核细胞产生S100A8/A9放大中性粒细胞炎症反应调控成人Still病发病及病情演变的机制研究
- 批准号:82373465
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SERPINF1/SRSF6/B7-H3信号通路在成人B-ALL免疫逃逸中的作用及机制研究
- 批准号:82300208
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 29.82万 - 项目类别:
Mechanism of epidermal coordination during development and regeneration in zebrafish
斑马鱼发育和再生过程中表皮协调机制
- 批准号:
10643060 - 财政年份:2023
- 资助金额:
$ 29.82万 - 项目类别:
Implementing SafeCare Kenya to Reduce Noncommunicable Disease Burden: Building Community Health Workers' Capacity to Support Parents with Young Children
实施 SafeCare Kenya 以减少非传染性疾病负担:建设社区卫生工作者支持有幼儿的父母的能力
- 批准号:
10672785 - 财政年份:2023
- 资助金额:
$ 29.82万 - 项目类别:
Development of an online, theory-based intervention to reduce e-cigarette use and susceptibility to smoking in young adults: A pilot study
开发基于理论的在线干预措施,以减少年轻人的电子烟使用和吸烟易感性:一项试点研究
- 批准号:
10664232 - 财政年份:2023
- 资助金额:
$ 29.82万 - 项目类别: